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ABSTRACT 

 

DURABILITY OF MECHANICALLY LOADED, FREEZE THAWED CONCRETE 
DETERMINED BY WATER ABSORPTION  

 

by 

Brian Mitchell 

 
The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Dr. Jian Zhao 
 

The design of concrete bridges is primarily focused on strength characteristics. However, it is 

often the case that durability characteristics, specifically early deterioration of the bridge deck, 

requires expensive repairs before the designed service life of the bridge can come to term. Lin et 

al. (2012) identified the development of microcracks as a possible source of this early 

deterioration. He proposed that these microcracks propagated due to high local compressive stress 

induced by overweight trucks. The resulting permeability increase caused by the propagation of 

these microcracks is not significant enough to cause the kind of early deterioration of bridge deck 

observed in the field. However, the combined effect of mechanical loading and F/T can cause 

much more severe microcrack development, and thereby, deterioration of concrete.  

Currently there are very few efficient ways of measuring the deterioration of concrete bridge 

decks. Standard tests are available for concrete samples, including ASTM C215 (dynamic 

modulus), ASTM C1202: Rapid Chloride Ion Penetration (RCIP), and Electrical Surface 

Resistivity (ESR). Alternatively, water absorption, measured by ASTM C642, can be used to 

determine the deterioration of concrete. The benefits of using water absorption to measure concrete 

durability include; relatively quick test periods, and no requirements on sample dimensions; thus, 

lending itself more to field testing of concrete cores extracted from bridge deck.  
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There is precedence correlating water absorption to the durability of concrete. Lin et al. (2012) 

observed that water absorption was directly proportional to the amount of charge passed in RCIP 

tests. There were several concerns with this study, therefore, the claim that water absorption 

correlated to the durability of concrete required further validation.       

In this study, mechanically loaded, F/T concrete cylinders were subjected to a variety of tests 

including; dynamic modulus, water absorption, and ESR. An inversely proportional relationship 

was found between absorption and ESR with a coefficient of determination (R2) of 63.5%. This 

strong relationship very clearly provides supporting evidence to help validate the original 

conclusion proposed by Lin et al. (2012), that water absorption directly relates the durability of 

concrete.  
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1. Introduction 
 
1.1 Concrete Bridge Deck 
 

The design of concrete bridges is primarily focused on strength characteristics. However, it is 

often the case that durability characteristics, specifically early deterioration of the bridge deck, 

requires expensive repairs before the designed service life of the bridge can come to term. In fact, 

a large number of bridges are afflicted by early deterioration of bridge deck (Elzafraney et al., 

2005, p. 159). Lin et al. (2012) identified the development of microcracks as a possible source of 

this early deterioration. He proposed that these microcracks propagated due to high local 

compressive stress induced by overweight trucks. This idea, however, has not yet been generally 

accepted. Currently, overweight trucks are permitted on U.S. highways and bridges. For the state 

of Wisconsin, for example, such vehicles are allowed if the overweight trucks follow a designated 

route and apply for a permit with varying costs allocated by weight. The permit fee can be as small 

as $20 for overweight vehicles weighing 0 through 90,000 pounds, or as high as $84 plus $10 for 

each additional 10,000 pounds for overweight vehicles weighing 150,001 pounds or more 

(WisDOT, 2005, p. 1). Overweight trucks, such as the one seen in Figure 2-1, can cause visible 

deflections within the bridge superstructure. Surely, such a large deflection must have some sort 

of deleterious effects on the concrete.  

 
1.2 Deterioration  
 

Through finite element analysis, Lin et al. (2012) determined that the local compressive 

stresses caused by simulated overweight trucks increased to as much as 0.4f’c. For concrete under 

uniaxial compression, stress levels between 0.3 through 0.5 percent of f’c are high enough to cause 

extension of microcracks in the interfacial transition zone (ITZ) (Mehta et al., 2006, p. 68). It is 
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known that the ITZ contributes to the permeability of concrete, however, with the onset of 

microcrack development, this contribution becomes even greater. The permeability of concrete is 

a concern because for most of the mechanisms responsible for the degradation of concrete (e.g. 

corrosion of reinforcing steel, cracking due to shrinkage, F/T, scaling, and chemical attack) water 

is either the primary cause or the primary medium by which aggressive agents (such as chloride or 

sulfate ions) are transported into the concrete (Yang et al., 2006, p. 424) (Mehta et al., 2006, 

p. 121). The increase in permeability, due to the propagation of microcracks resulting from 

compressive stresses ranging from 0.3 to 0.5 percent of f’c, is not significant enough to cause the 

kind of early deterioration of bridge deck observed in the field. However, the combined effect of 

mechanical loading and F/T can cause much more severe microcrack development, and thereby, 

deterioration of concrete. As temperature decreases, ice crystals (formed from free water in the 

voids of saturated concrete) start to expand within the pore network increasing hydraulic pressure 

(Lin et al., 2012, p. 2).  After repeated cycles of F/T this pressure increase further opens and 

propagates microcracks leading to increased connectivity of the pore network. These microcracks 

serve as an avenue and facilitate transport of liquids and other aggressive chemicals such as 

chloride ions which lead to deterioration.  

There have been numerous studies involving several deleterious mechanisms on the durability 

of concrete bridge deck; (ElSafty et al., 2013, p. 79); Arezoumandi (2015); (Rhee et al., 2009, 

p. 2)); (Shiotani et al., 2012); and Ishida, 2016 (2016). However, very few evaluate the damage to 

bridge deck caused by the combined effect of compressive stresses and F/T damage.  
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1.3 Measuring Deterioration  
 

Currently there are very few efficient ways of measuring the deterioration of concrete bridge 

decks. Standard tests are available for concrete samples, including ASTM C215: Fundamental 

Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens (dynamic 

modulus); ASTM C1202 (RCIP); and ESR which can be used to measure the deterioration of 

concrete. However, a couple of these, namely RCIP and ESR, are not without disadvantages. The 

former requires at least 29 hours, between conditioning and testing, and causes permanent damage 

to the concrete microstructure (ASTM C1202, p.5). The later requires cylindrical concrete 

specimens that are 4” x 8”. Therefore, testing of field specimen would be very difficult due to 

complication arising from coring a specimen from bridge deck that perfectly matches these 

dimensions (often the end will fracture). Additionally, the sample cannot contain any 

reinforcement as this would alter the results of the test. Alternatively, water absorption measured 

by ASTM C642: Density, Absorption, and Voids in Hardened Concrete, can be used to determine 

the deterioration of concrete. The benefits of using ASTM C642 to measure concrete durability 

include; relatively quick test periods, and no requirements on sample dimensions; thus, lending 

itself more to field testing of concrete cores extracted from bridge deck.  

 
1.4 Purpose 
 

There is precedence correlating water absorption to the durability of concrete. Lin et al. (2012) 

observed that water absorption was directly proportional to the amount of charge passed in RCIP 

tests (as measured by ASTM C1202). This relationship can be seen illustrated in Figure 2-2. In 

this study the combined effects of mechanical loading and F/T was evaluated on fifteen 4” x 8” 

concrete cylinders. The cylinders were subjected mechanical compressive stresses at various 
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percentages of f’c and subsequently to various numbers of F/T cycles. However, there was some 

concerns identified with this study. One of the disagreements was that dynamic modulus, a known 

method for determining the degradation of concrete, was never measured. Another criticism was 

that the correlation between water absorption and concrete durability should have been further 

reinforced by comparing the results from a variety of well-establish tests that measure concrete 

durability, not just RCIP. Lastly, there was concern that water absorption was not measured per 

ASTM standards. Hence, for all the aforementioned concerns, the claim that water absorption 

correlates to the durability of concrete requires further validation.       

 
1.5 Objectives: 
 

The intent of this current study is to reevaluate water absorption as it relates to concrete 

durability. By adhering more closely to ASTM standards for testing and by including other 

concrete durability tests, the author hopes to substantiate the claim made by Lin et al. (2012). The 

claim that water absorption (ASTM C642) may be used as a more effective testing method to 

determine the durability of concrete. The objectives of this study are to; 

1. Examine the conclusion of the previous study that water absorption is effective for testing 

concrete durability by showing it directly correlates with electric resistivity and dynamic 

modulus.  

2. Lay a foundation for validating the relationship between water absorption and the 

durability of concrete, especially the concrete in bridge decks that are subjected to 

combined mechanical loading and F/T cycles.  

3. Provide equations for others to check their own results of absorption for mechanically 

loaded F/T concrete.   
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4. Provide an array of water absorption test results for 2”x4” concrete disks to be compared 

with subsequently proposed ASTM C1202: RCIP testing on the same specimen.    

 
 
1.6 Experimental Program 
 

From the study by Lin et al. (2012) there remained fifteen 4” x 8” concrete cylinders. In the 

previous study, these cylinders were subjected to compressive stresses of varying percentages of 

f’c along with varying numbers of F/T cycles. The specific stress and number of F/T cycles per 

sample is unknown and the study is therefore blind. The type of concrete used is the same for all 

the cylinders thus providing the control for the experiment. The benefit of having the test arranged 

in such a way is that there will be no bias when analyzing the results.  

The cylinders were first tested for dynamic modulus using the contact driven forced 

resonance method (ASTM C215, p.1). The cylinders sat on top of soft rubber pads such that they 

were allowed to vibrate freely. A driving unit was placed halfway down the concrete specimen 

(longitudinally). An accelerometer was placed at the end of the specimen rotated 90° such that it 

was transverse to the driving unit. Vibrations from the driving unit were sent through the specimen 

at frequencies ranging from 1k through 10k hertz. The dynamic modulus was calculated using the 

peak frequency at which the cylinders resonated, as measured by the accelerometer, and indicated 

by the highest reading from a needle indicator.    

The concrete specimens were tested for absorption per ASTM 642. The cylinders were oven-

dried for a period of 24 hours. They were taken out of the oven an allowed to cool by natural heat 

loss to 25°C (77°F). The mass of the cylinders was recorded as the oven-dried mass (A). The 

process was repeated until successive values of A did not exceed 0.5% of the lesser value (ASTM 

C642, p.1). The cylinders were soaked in water for a period of 48 hours. The surface of each 
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sample was dried with paper towels to achieve a saturated surface dried state and the mass after 

immersion (B) was recorded. This process was repeated until successive values of B did not exceed 

0.5% of the greater value. The cylinders were then boiled for five hours and subsequently cooled 

for no less than fourteen hours. The saturated after boiling mass (C) was recorded. The samples 

were placed in a metal basket suspended in water by a chain secured around the top plate of a 

scale. The mass of the samples was recorded as the immersed apparent mass (D). The percent 

volume of permeable voids (PV) was determined from the bulk-dry density and the apparent 

density as calculated by equations 10 and 13, respectively (ASTM C642, p.2). PV is the value 

considered to be the measure of absorption for the samples. Linear regression analysis was used 

to determine the relationship of each mass recorded at each saturation state (e.g. A, B, C, D) to the 

resulting PV and to determine general best fit equations. Others (doing similar research) may find 

the equations and figures from this analysis useful for checking the results of their own work. A 

degree of caution should be exercised, however, since the regression analysis was generated using 

a small number of samples.  

The ESR of the concrete samples was determined using a SURFTM testing apparatus which 

consisted of a chamber and data acquisition system. Conductive gel was applied to the ends of the 

sixteen probes fitted around the circumference of the chamber in sets of four. The concrete 

cylinders, which were in a saturated surface dried condition, were placed inside the testing 

chamber. The data acquisition system was used to determine the electric surface resistance of the 

samples. The average surface resistivity was calculated by taking the average of 24 surface 

resistance measurements and multiplying by a geometrical factor.  

The concrete cylinders were cut into four sections using a water-cooled diamond cutting 

saw. The cut number for each created disk is designated as seen in Figure 3-4. The 60 cut concrete 
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disks, along with 62 additional disks remaining from the previous study by Lin et al. (2012), were 

tested for absorption. The generated data will be compared to the results of subsequently proposed 

ASTM C1202: RCIP testing (which will utilize the same samples).  

The results generated from the dynamic modulus, water absorption and ESR tests, using the 

cylinder samples, were compared and analyzed. When comparing ESR and absorption to dynamic 

modules, no clear relationship could be determined. The distribution of dynamic moduli was rather 

scattered, as such is commonly observed from previous literature. However, an inversely 

proportional relationship was determined between absorption and ESR with R2 equal to 63.5%. 

This strong relationship very clearly provides supporting evidence to help validate the original 

conclusion proposed by Lin et al. (2012) that water absorption directly relates the durability of 

concrete. This author hopes that water absorption can be used to measure the extent of damage 

caused to bridge deck from overweight vehicles. If the severity of damage is more well-known, 

hopefully some sort of policy change will be enacted.    

It should be noted that the results generated for the cylindrical sample presented in this study 

should be met with a degree of caution due to the limited number of samples.  

 
1.7 Organization  
 

A brief literature review coving such topics as; the deterioration of bridge deck due to 

overweight vehicles; the analysis on the permeability of a bridge regarding macro and microcracks; 

the effect of load type and time of application on the permeability of concrete; and electrical 

surface resistivity of concrete relating to durability; is provided in Chapter 2. The experimental 

program including, concrete samples tested, and detailed descriptions of each test conducted, is 

outline in Chapter 3. Chapter 4 contains data obtained from each test, along with tables and figures 
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which analyze said data. Chapter 5; briefly reaffirms the purpose and objectives of the study; 

presents all major conclusions; and indicates further research that could be pursued by others. 

Chapter 7, the appendix, displays raw data collected during testing along with pictures of each disk 

sample.   
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2 Literature Review  
 
2.1 Impact of Overweight Vehicles (With Heavy Axle Loads) On Bridge Deck 

Deterioration; by Lin et al.  
 
2.1.1 Introduction 
 

The impact of combined F/T and mechanical loading on the durability of concrete was 

evaluated in a recent study by Lin et al. (2012). To evaluate the effects of this combined action air-

entrained concrete cylinders were cast which consisted of “eight groups of three 100x200mm 

(4”x8”) cylinders” (Lin et al., 2012, vii). The cylinders were subjected to compressive stresses 

equal to 40 through 80 percent of the measured 28-day compressive strength (Lin et al., 2012, vii). 

After being subjected to varying compressive loads, the cylinders were exposed to 300 F/T cycles 

following a procedure similar to ASTM C666 (Lin et al., 2012, vii). Because “concrete durability 

is closely related to its water and chloride permeability (Lin et al., 2012, p. 9), the chloride 

permeability of the samples was evaluated using ASTM 1202. The study found that there was a 

strong correlation between water absorption and RCIP. However, the water absorption tests which 

had been conducted for the study, did not follow ASTM C642. Therefore, the conclusion that water 

absorption tests (ASTM C642) can provide similar results regarding the deterioration of concrete 

under combined mechanical loading and F/T cycles needs further verification.  

Only compressive stresses induced by overweight truck loads were considered since the 

impact of tensile stresses has been studied extensively in literature. This work differs from others 

in literature because it looks at the effects of combined mechanical loading and F/T action on the 

deterioration of concrete. Furthermore, unlike other studies which focus on permeability increase 

resulting from one or more macrocracks, this study looks at an increase in permeability as a result 

of several distributed microcracks.  
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2.1.2 Experimental Program 
 

In this study, Wisconsin Department of Transportation (WisDOT) specified air entrained 

Grade A-FA concrete was tested (Lin et al., 2012, p. 44). The water to cement ratio (w/c) was 0.4 

and the amount of fly ash (FA) was 30 percent by weight of cement (Lin et al., 2012, p. 25). The 

proportion of total cementitious material to coarse and fine aggregate was 1:3.55 and 1:1.9 by 

weight, respectively (Lin et al., 2012, p. 52). ASTM standard tests C143 and C231 were used to 

measure the fresh concrete properties of the concrete mixture. Using ASTM C231 the air content 

of the fresh concrete was found to be 7.8%.  The slump, measured according to ASTM 143, was 

found to be 6 in. (Lin et al., 2012, p. 25). After 28 days of curing in saturated lime water, the 

compressive strength was measured to be 27.1 MPa (3931 psi). At 120 days the compressive 

strength was found to be 38.7 MPa (5600 psi) which demonstrates the later strength development 

of concrete mixtures incorporating fly ash (Lin et al., 2012, p. 45). 

A total of twenty-four cylinders were cast and divided into eight groups of three cylinders. 

Of these cylinders, three were kept in air after 28 days of curing in saturated lime water. Samples 

cut from these cylinders were designated RNW (Lin et al., 2012, p. 25). Another group of three 

cylinders, designated as RW, were kept in water after 28 days. This was done to measure the effects 

that extended curing would have on the remaining cylinders. The rest of the cylinders, designated 

RD, had additional curing time since the hydration process would have continued while the 

cylinders were fully saturated for F/T testing (Lin et al., 2012, p. 25). To serve as a reference, all 

but three of the RD cylinders were subjected to predetermine varying compressive loads. All of 

the RD samples were exposed to 300 F/T cycles (Lin et al., 2012, p. 25). The compressive loads 

ranged from “40 through 80 percent of the measured ultimate compressive load” (Lin et al., 2012, 

p. 45). 
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It should be noted that 80 percent of the measured ultimate compressive load may seem 

high at first. However, the study was measuring the effects of compressive loads resulting from 

overweight vehicles on bridge deck. In such a case, the design for loading “assumes that the 

concrete is loaded beyond the strain corresponding to the peak stress ( f’c)” (Lin et al., 2012, p. 45). 

The study did not consider one important aspect of deck deterioration – the repeated truck loading. 

 
2.1.3 RCIP 

 
The effects of combined mechanical and F/T action were measured by rapid chloride ion 

penetration. Two 50 mm (2 in.) thick samples were sliced from the interior of the concrete 

cylinders (Lin et al., 2012, vii). Samples sliced from the RW and RNW cylinders, those not 

subjected to loads and F/T cycles, were also tested to serve as a reference (Lin et al., 2012, vii). 

Results indicated that the “chloride permeability of the concrete samples increased significantly 

with an increase in the applied compressive loads” (Lin et al., 2012, vii). The highest increase in 

average passing charge, 55%, could be seen between the D60 and the RD samples. When 

comparing to the reference samples, the highest increase of 93% could be observed between the 

D50 and RNW samples (Lin et al., 2012, vii). When comparing the results obtained from RCIP 

and absorption, and interesting correlation emerged. “A strong relationship was identified between 

the chloride permeability and the water absorption” (Lin et al., 2012, vii), both of which are highly 

influenced by the propagation of microcracks. It should be noted that the measurement of water 

absorption in this study did not completely follow the related ASTM standards; hence the 

conclusion may need to be further verified.  
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2.1.4 Microcracks  
 

The authors made a hypothesis that the principal mechanism responsible for the observed 

increase in chloride permeability was the propagation of microcracks (Lin et al., 2012, vii). Higher 

compressive loads caused more extensive microcrack networks facilitating transport (Lin et al., 

2012, vii). “These passageways were further opened and interconnected during the F/T cycles due 

to an increase in hydraulic pressure” (Lin et al., 2012, vii). The formation and expansion of ice 

crystals within the void space of the concrete was responsible for the increase in hydraulic pressure 

(Lin et al., 2012, vii).  

The hypothesis that microcrack facilitated an increase in chloride permeability “was 

confirmed by the scanning electronic microscopic (SEM) images of the loaded and unloaded 

specimens” (Lin et al., 2012, vii). Images revealed the through-thickness microcracks which 

facilitated the transit of chloride ions in the loaded specimen (Lin et al., 2012, vii). For example, 

the SEM images for sample D40  displayed through cracks which acted as passageways for 

chloride ions  (Lin et al., 2012, p. 127). “As a result, the average value of charge passed allowed 

by D40 samples had an increase of 10 percent compared with RD samples” (Lin et al., 2012, 

p. 127).  

 
2.1.5 Water Absorption 
 

In this study water absorption was used to indirectly measure the amount of microcracks 

and air voids present within the concrete (Lin et al., 2012, p. 209). In general, the water absorption 

of the concrete specimen increased with an increase in the applied load  (Lin et al., 2012, p. 129). 

A great example of this can be seen with the RW specimens, which were cured in water. These 

samples had the least water absorption which corresponds to their low charge passed in RCPT (Lin 
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et al., 2012, p. 129). Unlike the microstructure of the RW samples, the RNW samples, which were 

cured in air, were not able to develop such as dense of a microstructure. The water absorption of 

RNW specimens was high corresponding to increased charge passed (when compared with RW 

specimens) (Lin et al., 2012, p. 129).  

While measuring the water absorption, “a strong relationship was identified between the 

chloride permeability and the water absorption (Lin et al., 2012, vii). This relationship between 

the measured passing charge and the measured water absorption can be seen from the linear 

trendline in Figure 2-2 (Lin et al., 2012, p. 129). Therefore, the study proposed that water 

absorption could be used as a viable alternative to determining the durability of concrete (Lin et 

al., 2012, p. 190), especially for concrete samples obtained from the field to evaluate the bridge 

deck conditions.  

  



www.manaraa.com

14 
 

 
Figure 2-1: Overweight vehicle causing visible deflections in bridge (Lin et al., 2012, p. 23). 

 

 
Figure 2-2: Corrected charge passed through samples with various levels of microcracks (Lin et al., 2012, p. 126) 
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Test No. Preloading+ 
(MPa) 

F/T Water 
absorption 

Charge passed in RCPT 
(coulombs) 

F/T 
(cycles) 

Weight loss 

(%) 
Volume 
ratio (%) 

Charge 
passed 

Average charge passed++ 

RW-1 0 0 - 1.4 698 714.83 
(5%) RW-2 1.6 772 

RW-3 1.6 710 
RW-4 1.4 664 
RW-5 1.6 746 
RW-6 2.0 699 

RNW-1 0 0 - 4.5 1528 1629.17 
(15%) RNW-2 4.2 1293 

RNW-3 2.2 1464 
RNW-4 4.1 1625 
RNW-5 4.1 2021 
RNW-6 5.0 1844 
RD-1 0 300 0.25 3.0 2183 2030.80 

(11%) RD-2 2.7 2085 
RD-3 0.18 2.8 2100 
RD-4 3.5 2193 
RD-5 0.25 2.6 1593 
RD-6 - - 
D40-1 10.9 300 0.08 2.5 1652 2232.33 

(21%) D40-2 2.2 1718 

D40-3 10.9 0.23 2.7 2309 
D40-4 2.6 2077 
D40-5 10.8 0.13 3.2 2856 
D40-6 3.4 2782 
D50-1 13.7 300 0.72 3.5 2804 2757.67 

(25%) D50-2 3.2 2401 
D50-3 13.7 1.01 4.8 2531 
D50-4 4.9 4197 
D50-5 13.6 0.42 3.2 2585 
D50-6 2.8 2028 
D60-1 16.2 300 1.23 3.1 2526 2842.33 

(18%) D60-2 3.7 3086 
D60-3 16.4 0.63 3.2 2391 
D60-4 3.1 2377 
D60-5 16.3 0.35 4.0 2848 
D60-6 3.6 3826 
D70-1 18.9 300 0.30 3.4 2581 3138.17 

(25%) D70-2 3.7 2970 
D70-3 19.0 0.33 5.2 4532 
D70-4 3.9 3612 
D70-5 19.0 1.89 3.3 2051 
D70-6 3.3 3083 
D80-1 21.7 300 0.56 4.3 3872 3044.33 

(13%) D80-2 3.8 3076 
D80-3 21.9 1.25 3.7 2743 
D80-4 3.7 2830 
D80-5 21.8 0.52 3.2 2631 
D80-6 3.6 3114 

Figure 2-3: Lin et al. (2012) summary of experiment results (Lin et al., 2012, p. 55)
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2.2 Quantitative Microstructural Investigation of Deteriorated Reinforced 
Concrete Bridge Deck; by Elzafraney et al.  

 
2.2.1 Introduction  
 

The microstructure of an existing bridge over I-94 at exit 121 in Albion, Michigan  was 

evaluated (Elzafraney et al., 2005, p. 159). At the time of the study the bridge was only 25 years 

old but was already showing signs of deterioration (Elzafraney et al., 2005, p. 159). This four-lane 

bridge, two in each direction, had “two internal supports and two abutments” (Elzafraney et al., 

2005, p. 160). The concrete deck depth was 22.5 cm (9 in.) thick (Elzafraney et al., 2005, p. 160). 

Visual inspection of the bridge deck revealed close to 50 visible cracks with “widths that ranged 

from 10 to 20 mm (3/8-3/4 in.)” (Elzafraney et al., 2005, p. 160).  

The bridge was divided up into three sections based on the visual deterioration (Elzafraney 

et al., 2005, p. 159). A total of 32 cores, 12.5 cm (5 in.) tall and 10 cm (4 in.) in diameter, were 

extracted from the bridge deck sections (Elzafraney et al., 2005, p. 160). Eighteen samples were 

tested for compressing (ASTM C39), splitting tension (ASTM C96), and chloride permeability 

(ASTM C1202) (Elzafraney et al., 2005, p. 160). Fifteen samples were used to analyze the 

microstructure of the concrete through images obtained by environmental scanning electron 

microscopy (ESEM) (Elzafraney et al., 2005, p. 161). 

 
2.2.2 Experimental Program 
 

The study began by dividing the bridge up into three sections based off of obvious visual 

difference in damage conditions” (Elzafraney et al., 2005, p. 159). These sections, ranging from 

most to least damaged, were Sub-Region I, Sub-Region II, and Sub-Region III, respectively. “A 

total of 32 cores of 10 cm (4 in.) diameter were extracted from the bridge deck (Elzafraney et al., 
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2005, p. 160). Fourteen of the samples were taken from Sub-Region I; eleven from Sub-Region II; 

and seven from Sub-Region III (Elzafraney et al., 2005, p. 160). The cored samples were only 12.5 

cm (5 in.) tall “in order to avoid any risk of cores falling through onto oncoming traffic below 

(Elzafraney et al., 2005, p. 160). For this reason, a more convenient way to evaluate the durability 

of field sample may be necessary, such as the water absorption tests proposed by Lin et al. (2012). 

A diagram displaying the approximate location of each sample, along with the Sub-Region and 

visible cracks can be seen in Figure 2-4. 

Eighteen of the samples were tested for “compression (ASTM C39), splitting tension 

(ASTM C96), and permeability (ASTM C1202)” (Elzafraney et al., 2005, p. 161). Fifteen of the 

samples were set aside to analyze the microstructure of the concrete. These fifteen concrete cores 

were cut in two using a wet diamond concrete saw (Elzafraney et al., 2005, p. 161). One cut was 

made parallel to, and the other was cut perpendicular to the applied traffic load (Elzafraney et al., 

2005, p. 161). These sections were further cut down to “75 mm x75 mm x 50 mm (3 in. x 3 in. x 

2 in.) samples” so that the microstructure of the concrete could be analyzed using images obtained 

through environmental scanning electron microscopy (ESEM) (Elzafraney et al., 2005, p. 161). 

The test plan is further explained by Figure 2-5.  

  
2.2.3 Microscopy  
 

The cut sections were prepared through Wood’s metal impregnation to provided good 

contrast between microcracks and the body of concrete” (Elzafraney et al., 2005, p. 161). A total 

of 4,320 images were captured at a magnification of 125X to analyze the microstructure of the 

concrete (Elzafraney et al., 2005, p. 162). QmacTM analysis software was used to automate the 

process of capturing images, processing data, and analyzing the images (Elzafraney et al., 2005, 
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p. 162). From this software, quantitative planar (2D) and spatial (3D) information on microcrack 

system was developed (Elzafraney et al., 2005, p. 162). The (2D) microcrack characteristics 

determined were “ length per unit area, perimeter per unit area, width per unit area, area fraction, 

spacing, tortuosity, angle of orientation, and degree of orientation” (Elzafraney et al., 2005, 

p. 162). The (3D) microcrack characteristics determined were “specific surface area, width, 

volume fraction, spacing, tortuosity, and degree of orientation” (Elzafraney et al., 2005, p. 162). 

The results for the spatial (3D) test parameters can be seen in Figure 2-6. 

 
2.2.4 Results   
 

It was found that there was a significant difference in the microstructure of concrete cores 

taken near or over visible cracks compared to cores taken far from cracks (Elzafraney et al., 2005, 

p. 164). These differences could be seen “in terms of microcrack length per unit area and area 

fraction” (Elzafraney et al., 2005, p. 164). This provided supporting evidence regarding the 

coalescence of microcracks leading to the formation of macrocracks near visible cracks 

(Elzafraney et al., 2005, p. 164).  In fact, the spatial (3D) results were in general agreement with 

the planar (2D) measurements. This lends itself to the conclusion that “there is a direct relationship 

between visible damage (macrocracks) and internal damage (microcracks)” (Elzafraney et al., 

2005, p. 167). 

This study found that the mechanical properties of the concrete (compression and tensile 

splitting strengths) did not vary between visually determinable Sub-Regions (Elzafraney et al., 

2005, p. 162). The permeability, however, was significantly different from one region to the next 

(Elzafraney et al., 2005, p. 162). It was found that permeability was “higher for Sub-Region I 

(severe level of damage) and lower for Sub-Region II (moderate level of damage) and Sub-Region 
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III” (low level of damage) (Elzafraney et al., 2005, p. 162). “The high permeability of Sub-Region 

I reflects the severe microcracking in this Sub-Region” (Elzafraney et al., 2005, p. 162). In fact, 

an increased in microcrack intensity was found to be “correlated with increased permeability 

values. This suggests that permeability is more sensitive to internal damage (microcracks) than 

mechanical strength. Thus, permeability tests provide more insights into concrete quality and 

health condition than is possible by only mechanical tests.” (Elzafraney et al., 2005, p. 167). 

  



www.manaraa.com

20 
 

 
Figure 2-4: Sub-Regions I, II, and III along with approximate locations of samples cored and visible cracks (Elzafraney et al., 

2005, p. 161).

 
Figure 2-5: Details of Test Plan (Elzafraney et al., 2005, p. 161). 

 
Figure 2-6: Spatial (3D) measurements for all Sub-Regions  (means and standard errors): (a) specific surface area, (b) width, (c) 

volume fraction, (d) spacing, (e) tortuosity, and (f) degree of orientations (Elzafraney et al., 2005, p. 165). 
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2.3 The Effect of Mechanical Stress on Permeability of Concrete: A Review; 
by Hoseini et al.  

 
2.3.1 Introduction 
 

Hoseini et al. presented a culmination of several different studies relating to the 

permeability of concrete. The study looked at the “effect of loading type, crack dimensions, 

admixtures, and fiber reinforcement on the permeability of fluids in concrete under stress” 

(Hoseini et al., 2009, p. 213). Only induced stress, which was a result of the “direct application of 

mechanical loading,” was considered (Hoseini et al., 2009, p. 213). Other stresses, such as that 

resulting from shrinkage, thermal and creep effects, were outside the scope of the study (Hoseini 

et al., 2009, p. 213). 

One of the principle motifs of this study was that loading, whether it be monotonic, cyclic, 

administered prior, or administered after, has a big impact on the measured permeability and by 

extension durability of the concrete. Furthermore, this study points out that it is not the immediate 

service loads that are of concern (Hoseini et al., 2009, p. 213). Instead, it is the long term loads 

which cause degradation of concrete by promoting the propagation and coalescence of microcracks 

(Hoseini et al., 2009, p. 213). This increases the interconnectivity of the pore network which 

facilitates ingress of liquids and chloride ions (Hoseini et al., 2009, p. 213).  

  
2.3.2 Permeability  
 

Permeability can be described as “the transport mechanism by bulk flow within a porous 

medium” (Hoseini et al., 2009, p. 214). The permeability of concrete is closely tied to the durability 

of concrete. Therefore, the properties of concrete are largely dependent upon “the number size and 

distribution of pores in the cement paste, the aggregates and the resultant interface” (Hoseini et al., 

2009, p. 213). In this study the permeability of concrete was evaluated according to load 
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configuration (compression, tension, flexure) and the instance of permeability (measured under 

the application of a load or without).  

 
2.3.3 Microcracks 
 

Microcracks have a significant effect on the permeability of concrete. The propagation and 

coalescence of microcracks leads to a more developed and interconnected pore network, thus 

increasing permeability (Hoseini et al., 2009, p. 213). Studies have shown that for compressive 

loading less than 30% of ultimate, cracks are generally restricted to the aggregate-paste interface 

or the ITZ (Hoseini et al., 2009, p. 214). This results in little increase in permeability  (Hoseini et 

al., 2009, p. 214). However, for loads approaching peak values, the microcracks start to extend out 

into the concrete matrix and permeability greatly increases (Hoseini et al., 2009, p. 214).  

The study found that crack geometry, specifically the crack width and tortuosity, have a 

significant impact on permeability while crack length has little effect (Hoseini et al., 2009, p. 217). 

In fact, there is a relationship between crack width and permeability of concrete. “For cracks wider 

than 1 mm, permeability in concrete is proportional to the cube of the crack width (Mehta et al., 

2006, p. 68). Hence, a specimen with several smaller cracks will be less permeable than that with 

a single large crack” (Hoseini et al., 2009, p. 217). 

Several studies have tried to evaluate a threshold value for crack opening displacements 

(COD). In their study “Wang et al. reported a threshold value of 50 μm, while Aldea et al. found 

a threshold crack width of 100 μm for concrete specimens under load. In other related studies the 

threshold crack width was found to be twice as much (200 μm) for chloride permeability” (Hoseini 

et al., 2009, p. 217). 
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2.3.4 Loading  
 

While the effects of transport mechanisms on the durability of concrete have been well 

studied, there is very little existing literature on how these mechanisms are affected by mechanical 

stress (Hoseini et al., 2009, p. 213). “The type of applied stress (compression, tension and flexure), 

the rate of loading and the load level (as a fraction of ultimate), all influence the crack generation 

and pattern (Hoseini et al., 2009, p. 214). Changing the crack pattern inevitably changes the 

permeability of the concrete (Hoseini et al., 2009, p. 214).  

There have been a few studies which have investigated the effects of mechanical loading 

on permeability. Kermani et al. evaluated the permeability of concrete after the specimen were 

unloaded (Hoseini et al., 2009, p. 214). Based off their findings, a threshold stress level of 

approximately 40% of ultimate was proposed (Hoseini et al., 2009, p. 214). After this stress level 

has been reached the permeability of concrete was found to increase rapidly (Hoseini et al., 2009, 

p. 214). The study revealed that for lower levels of compressive loading, permeability was found 

to be constant or decrease slightly.  This constant or slight drop in permeability was because of 

“consolidation or closing of voids and microcracks in concrete” (Hoseini et al., 2009, p. 216). In 

Figure 2-8 one can see further evidence of this consolidation. It was found that for threshold 

stresses up to 80% of the peak stress, the permeability of concrete was higher after removing the 

compressive load (Hoseini et al., 2009, p. 216). In fact, after removing the load permeability was 

found to remain constant for loads up to 70-80% of ultimate (Hoseini et al., 2009, p. 216). This is 

in direct contrast to the stress dependent behavior of permeability under load (Hoseini et al., 2009, 

p. 214).  

Different studies have found other interesting effects that monotonic and cyclic loading 

have had on permeability. A study was conducted evaluating the chloride permeability of concrete 
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per AASHTO T277. This study found that concrete subjected to a monotonic compressive stress, 

even at ultimate, displayed only a marginal difference in chloride permeability  (Hoseini et al., 

2009, p. 217). However, under cyclic compressive loading, there was a distinguishable threshold 

stress at 50% of ultimate beyond which there was a significant increase in the chloride permeability  

(Hoseini et al., 2009, p. 217). Therefore, “cyclic loading was seen to lower the threshold value of 

stress” (Hoseini et al., 2009, p. 217). 

 
2.3.5 Fiber Reinforcement Concrete (FRC) 
 

As seen earlier, cracks have more of an influence on permeability when they propagate in 

the concrete matrix as opposed to the ITZ (Hoseini et al., 2009, p. 214). Recall that for cracks 

wider than 1 mm, permeability in concrete is proportional to the cube of the crack width (Hoseini 

et al., 2009, p. 217). Therefore, the use of FRC would be highly beneficial in reducing permeability 

since the bridged cracks would be smaller (Hoseini et al., 2009, p. 218). Even though FRC has 

higher unrecoverable deformation, the use of fibers reduces permeability (Hoseini et al., 2009, 

p. 218).  “This is likely due to a change in the crack profile… whereby, instead of the appearance 

of a few large cracks, a multitude of closely spaced microcracks form” (Hoseini et al., 2009, 

p. 218). 

 
2.3.6 Conclusion   
 

The study concluded that under applied compressive stress there is a threshold value of 

30% of ultimate strength, beyond which the permeability of concrete greatly increases (Hoseini et 

al., 2009, p. 219). Furthermore, for normal weight concrete (NWC) the permeability is strongly 

related to the matrix strength (Hoseini et al., 2009, p. 218). “This has to do with a slower crack 

recovery in normal strength concrete…. Compared to the highly linear stress-strain response of 
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high strength concrete (HSC) (Hoseini et al., 2009, p. 218). The use of fibers can reduce the 

permeability of concrete by bridging microcracks before the coalesce and interconnect. “Although 

the total crack width was far greater with ultra-high performance concrete (UHPC), the 

permeability was significantly reduced, since individual cracks were much finer in the UHPC than 

in the normal concrete” (Hoseini et al., 2009, p. 219). Cyclic loading leads to a significant increase 

in permeability compared to monotonic loading (Hoseini et al., 2009, p. 219). The COD threshold 

value ranges from 50-100 μm after which permeability greatly increases (Hoseini et al., 2009, 

p. 219). The permeability does reach a constant flow as the specimen approaches failure (Hoseini 

et al., 2009, p. 219). From Figure 2-8 it is clear that for a given COD, “concrete is less permeable 

when under load (Hoseini et al., 2009, p. 219).  
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Figure 2-7: Effect of load levels on permeability under compression (Hoseini et al., 2009, p. 216) 

 

 
Figure 2-8: Relation between water permeability and crack opening displacement (Hoseini et al., 2009, p. 217) 
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Figure 2-9: Effect of stress on the relative permeability of plain concrete and FRC. (Hoseini et al., 2009, p. 218) 

 

 
Figure 2-10: Effects of applied stress on permeability (Hoseini et al., 2009, p. 217) 

 

ܬ =
݇ᇱ

ߟ  (ܲ)݀ܽݎ݃

Equation 2-1: Darcy’s Law, where J is the volumetric flow rate (m/s), k’ is the intrinsic permeability (m2), ƞ is the dynamic 
viscosity (kg/ms) and P is the pressure (Pa) (Hoseini et al., 2009, p. 214).  
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2.4 Electrical Resistivity of Concrete; Concepts, Applications, and 
Measurement Techniques by Layssi et al.  

 
2.4.1 Introduction 
 

This publication evaluates different approaches in determining the durability of concrete 

through measuring the ESR. Similar testing methods such as RCIP are briefly discussed. An ESR 

testing setup using the Wenner four-probe test configuration is proposed. An ESR test with such a 

configuration can be related to the chloride permeability by the Nernst-Einstein equation. It is well 

known that the durability of concrete is highly depended on its microstructure (Layssi et al., 2015, 

p. 41). Pore size distribution, interconnectivity, and tortuosity all have a big impact on permeability 

(Layssi et al., 2015, p. 41). ESR itself is also affected by pore size distribution and 

interconnectivity but additionally is sensitive to degree of saturation and temperature (Layssi et 

al., 2015, p. 43). Therefore samples should be conditioned prior to testing in a “surface dry (SSD)” 

state and temperature should be closely monitored (Layssi et al., 2015, p. 43). 

 
2.4.2 RCIP 
 

The standard test for RCIP, originally proposed by Whiting, measures the total electrical 

charge passed through a concrete specimen subjected to an applied voltage (Layssi et al., 2015, 

p. 41). By measuring the electrical charged passed, the test provides an indication of the chloride 

permeability and thus the durability of concrete. This testing method is rather inconvenient, 

however, since it requires a significant amount of time and damages the concrete sample (Layssi 

et al., 2015, p. 41). Furthermore, the results are more qualitative rather than quantitative. The 

amount of charge passed is related to the chloride permeability by Figure 2-12. 

 
 



www.manaraa.com

29 
 

2.4.3 ESR 
 

Instead, quantitative tests that measure the ESR and are related linearly to the chloride 

diffusion coefficient by the Nernst-Einstein equation (see Figure 2-13.), require far less time 

(Layssi et al., 2015, p. 41). The ESR of concrete is the ability to withstand the transfer of ions 

subjected to an electrical field (Layssi et al., 2015, p. 41). Measurements obtained from ESR are a 

reflection of the interconnectivity of the pore network (Layssi et al., 2015, p. 41). One needs to 

consider the capacitive properties of concrete and how it will affect the ESR measurements (Layssi 

et al., 2015, p. 42) . If an AC circuit is used, then the effects of capacitance are no longer a concern, 

however, reactance is now introduced into the system (Layssi et al., 2015, p. 42). Reactance is a 

non-resistive opposition to current in an AC circuit (Layssi et al., 2015, p. 42). Therefore, one 

needs to consider the Impedance (Z) of the system. Impedance is the combined “opposition to 

current resulting from resistance (R) and reactance (X) (Layssi et al., 2015, p. 42).  A geometric 

description of the reactance and impedance can be seen in Figure 2-11.  

 One commonly accepted ESR testing configuration is the Wenner probe method in which 

four electrodes are evenly spaced in a straight line (Layssi et al., 2015, p. 42). The two interior 

electrodes measure the potential (V) “created when the exterior electrodes apply an AC current to 

the concrete”  (Layssi et al., 2015, p. 42). Such a probe configuration is highly sensitive to the 

surface conditions of the concrete (Layssi et al., 2015, p. 43). The degree of saturation and the 

presence of surface cracks can greatly impact the ESR results (Layssi et al., 2015, p. 43). It is 

therefore advisable to take the average of four probe set readings spaced evenly around the sample 

(Layssi et al., 2015, p. 43).  

 ESR measurements are also sensitive to temperature. This is because “the electric current 

flow in concrete is the result of ionic movement within the pore solution, and ionic mobility is 
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affected by temperature” (Layssi et al., 2015, p. 43). In general, an increase in ionic mobility and 

thus in electric resistivity, results from an increase in temperature (Layssi et al., 2015, p. 43). For 

a temperature difference of 1°C (1.8°F) the ESR of concrete can be off by 3% 1.8°F.  

 
2.4.4 Conclusion  
 

ESR testing methods, utilizing the four-point Wenner probe configuration, offer a more 

effective testing procedure to determine the durability of concrete by measuring chloride diffusion 

(Layssi et al., 2015, p. 42). The chloride diffusion coefficient is related to the ESR linearly by the 

Nernst-Einstein equation (Layssi et al., 2015, p. 41). Any “nonlinear relationship between 

electrical resistivity and RCP values is largely the result of changes in the temperature and 

properties of the pore solution during the RCP test.” (Layssi et al., 2015, p. 45) The condition of 

the sample surface, such as the presence of cracks and the degree of saturation, can have a big 

impact on the measured ESR (Layssi et al., 2015, p. 43). 
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Figure 2-11: Impedance is a complex number that can be represented as the vector sum of resistance on the real axis and 

reactance on the negative imaginary axis. 

  

 

Figure 2-12: Relationship between ESR and chloride penetration (Giatec Scientific, p. 5) 

 
Figure 2-13: Relationship between electrical conductivity and chloride diffusion coefficient (Layssi et al., 2015, p. 45) 
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3 Experimental Program  
 
3.1 Introduction 
 

Much time and dedication of resources has been spent on understanding how to improve the 

durability of concrete. Despite our best efforts, however, concrete (such as that used for bridge 

deck) continues to deteriorate prior to reaching its designed service life. In a previous study, Lin 

et al. (2012) (see section 2.1) concluded that stress induced from mechanical compressive wheel 

loads from overweight vehicles combined with F/T action can cause early deterioration of bridge 

deck. The report by Lin et al. (2012) concluded that microcracks caused by these combined stresses 

created a pathway for harmful chloride ions to penetrate and cause early deterioration. Regarding 

this study there is concern in several key areas as subsequently listed  

 Concrete samples were subjected to freeze thaw cycles. However, dynamic modulus, a 

known method for determine deterioration of concrete subjected to F/T, was never 

determined.  

 The water absorption was not measured per ASTM C642. Hence the correlation 

between the water absorption and the concrete durability, as concluded by the 

researchers (see Figure 2-2), should be further examined.  

 The research concluded that water absorption tests can be used to evaluate the 

durability of field concrete samples and thus serves as an indication of the deterioration 

of concrete bridge decks. This conclusion needs to be examined using more tests of 

concrete samples for a variety of well-established concrete durability measurements. 

The intent of this current study is to reevaluate water absorption as it relates to concrete 

durability. By adhering more closely to ASTM standards for testing and by including other 
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concrete durability tests, the author hopes to substantiate the claim made by Lin et al. (2012). The 

claim that water absorption (ASTM C642) may be used as a more effective testing method to 

determine the durability of concrete.  

 
3.2 Objectives 
 

The objectives of the experimental program are to; 

1. Examine the conclusion of the previous study that water absorption is effective for testing 

concrete durability by showing it directly correlates with electric resistivity and dynamic 

modulus.  

2. Lay a foundation for validating the relationship between water absorption and the 

durability of concrete, especially the concrete in bridge decks that are subjected to 

combined mechanical loading and F/T cycles.  

3. Provide equations for others to check their own results of absorption for mechanically 

loaded F/T concrete.   

4. Provide an array of water absorption test results for 2”x4” concrete disks to be compared 

with subsequently proposed ASTM C1202: RCIP testing on the same specimen.    

 
3.3 Specimen Design  
 

From the previous study by Lin et al. (2012) there remained fifteen 8” x 4” concrete cylinders 

and sixty-two 2” x 4” concrete disks. These concrete samples had been subjected to compressive 

loading of approximately 40 percent of the measured 28-day strength, though the information on 

the exact loading levels in unknown. The cylinders and disks were created using an air entrained 

Grade A-FA concrete mixture as specified by WisDOT (Lin et al., 2012, p. 44). The w/c ratio for 
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the concrete was 0.4 and the total amount of FA used was 30% of the total cementitious material 

by weight (Lin et al., 2012, p. 25). Because the compressive stress which each specific sample was 

subjected to is unknown, the study; which focused on the verification of water absorption and the 

concrete durability represented by dynamic modulus and surface resistivity; is therefore blind. The 

study was designed as such to remove any possible bias that could impact the results.  

The 2” tall concrete cylinders were separated into groups of nine and were labeled with a “D” 

denoting disk samples. These samples were labeled alphabetically ranging from B-H, and then 

numerically 1-9 (e.g. D-1B). These concrete samples were tested for water absorption according 

to ASTM C642. Later research is proposed to test the same samples for RCIP per ASTM C1202.  

The 8” tall concrete cylinders retained their original designations which intermittently ranged 

from C-06 through C-42. These samples were tested for dynamic modulus (ASTM C215), water 

absorption (ASTM C642), and electric resistivity. At the conclusion of these tests, using a water-

cooled diamond saw, the cylinders were cut down to 2” tall disks. These samples were designated 

with a D followed by the cylinder number from which they were cut and then by the cut number. 

The cut number ranged from 1 through 4 with 1 and 2 corresponding to the two interior cuts (see 

Figure 3-4). These samples were tested for water absorption (ASTM C642) and will join the other 

disks for RCIP testing to follow.  

 
3.4 Dynamic Modulus 
 

The dynamic modulus of the concrete samples was tested using the contact driven forced 

resonance method outlined in ASTM C215. The mass, length and cross sectional area were 

measured for all of the 8” tall concrete cylindrical specimen. With the length known, the 

approximate location for the supports could be determined as 0.224L from each end of the cylinder 
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(see Figure 3-1). The supports were soft rubber pads such that the concrete sample was allowed to 

vibrate freely (ASTM C215, p. 2). The electro-mechanical driving unit was placed at the top of 

the specimen, approximately half the length down longitudinally. The accelerometer was placed 

at the end of the specimen perpendicular to the driving unit (see Figure 3-2). The reason for such 

a configuration is because the vibrations are at maximum at the ends of the sample, approximately 

three fifths of the maximum at center, and zero at the nodal points (ASTM C215, p. 4). Petroleum 

jelly was used where the driving unit and the accelerometer were in contact with the concrete 

specimen (to ensure good contact and adequate vibration transmission). The specimen was 

subjected to vibrations at varying frequencies ranging from 1k to 10k hertz. A meter indicator was 

used in place of an oscilloscope to measure the output frequency. The frequency at which the 

needle on the meter indicator reached its peak value was recorded as the fundamental transverse 

frequency of the specimen (ASTM C215, p. 3). The samples were tested a second time so that an 

average peak frequency could be determined.  

It should be mentioned that the dynamic modulus of samples; C-15, C-17, C-21, C-22, C-28, 

C-29, C-30, C-34, C-35, C-40, and C-42; were tested within a couple of days of each other in the 

month of July. Samples; C-06, C-11, C-14, and C-16; were tested later in the experimental program 

in the month of November. While all testing was conducted in climate controlled environments, 

the difference in time between tests is worth mentioning because ambient humidity has been 

known to affect the results of dynamic modulus testing. 

To calculate the dynamic modulus, a correction factor T needed to be determined from ASTM 

C215 Table 1. The correction factor is dependent on the Poisson’s ratio of the concrete. The 

concrete specimens were obtained from a previous study, Lin et al. (2012), in which the Poisson’s 

ratio was never determined. Poisson’s ratio could be determined by ASTM C469: Standard Test 
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Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. 

However, this would alter the microstructure of the samples because the standard requires the 

samples to be loaded to 40% of the ultimate load (ASTM C469, p. 4). For concrete under uniaxial 

compression, stress levels between 0.3 through 0.5 percent of f’c are high enough to cause 

extension of microcracks in the ITZ (Mehta et al., 2006, p. 68). If the microstructure of the samples 

was altered, then making a comparison of durability results from one test standard to another would 

be nonsensical since permeability would increase. Therefore, instead of determining the Poisson’s 

ratio of the concrete, the value was assumed to be 0.17. This is a reasonable assumption because 

for lower values of k/L the calculated correction factor T, and the resulting dynamic modulus, only 

varies by 2% for values or Poisson’s ratio varying from 01.17 to 0.26 (the upper and lower values 

for Poisson’s Ratio in ASTM C215 Table 1).  

While collection data, it was observed that the testing apparatus did not always perform 

correctly, if the driving unit and the concrete specimen were too in contact, then the vibration from 

the driving unit sounded dull. However, if the driving unit was just barely in contact with the 

concrete specimen, then the sound of the vibration resonated with more of a buzzing noise. It was 

observed while testing a specimen for the second time, that if the driving unit sounded dull, then a 

peak frequency observed during the first test (when the driving unit was resonating) would not 

register on the needle indicator. Furthermore, for lower range frequencies (typically less than 2500 

Hz) the driving unit would sound dull regardless of the contact condition with the concrete 

specimen. The lower range frequencies could still be tested by going to a higher frequency first, 

to obtain the right sound (typically 4000 Hz), and then by moving back down the frequency 

spectrum. The resonating sound would be carried down through the lower frequency ranges until 



www.manaraa.com

37 
 

approximately 1600 Hz when the dull sound would return. These complications could be one 

source of error that resulted in the high standard deviation discussed later in section 4. 

 
3.5 Water Absorption 

 
3.5.1 Oven-Dried State 
 

The absorption of the concrete specimens was evaluated per ASTM C642. The concrete 

specimens were oven-dried in stainless-steel containers at a temperature of 110C (230F) for a 

period of 24 hours (ASTM C642, p. 1). After 24 hours, the containers were taken out of the oven 

and the samples were temporarily removed from their containers. The bottoms of the stainless-

steel containers were lined with 2” by 2” concrete cube spacers and approximately ¼” deep of 

DrieriteTM indicator desiccant crystals (see Figure 3-3). The concrete specimen sat above the 

desiccant crystals on top of the concrete cube spacers. This was done to increase the amount of 

surface area of the samples exposed to air within the container so that they might stay dry and cool 

at a faster rate. Once the concrete specimens were placed back into the stainless-steel containers, 

the containers were covered with saran wrap. The saran wrap was secured underneath the lip of 

the containers with tape running along the containers perimeter (see Figure 3-5). After application, 

the saran wrap was visually inspected for punctures. Any holes in the saran wrap were quickly 

covered with tape. The purpose for the desiccant crystals and saran wrap was to ensure that the 

concrete specimen stayed in an oven-dried state, free from the influence of ambient humidity. A 

desiccator could have been used as recommended by the standard, however, this would have 

significantly slowed down the process because it would permit the testing of only a few samples 

at a time. The samples were cooled by natural heat loss, typically for eleven hours, to a final 

temperature ranging from 20°C  to 25°C (68°F to 77°F) (ASTM C642, p. 1). The mass of the 

samples was recorded as the oven-dried mass (A) (ASTM C642, p. 1). This process was repeated 
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until the difference between successive values of mass were less than 0.5% of the lesser value 

(ASTM C642, p. 1).  

 
3.5.2 Saturated After Immersion State 
 

The concrete samples were temporarily taken out from their stainless-steel containers. The 

concrete cubes and DrieriteTM desiccant crystals were removed and the containers were rinsed and 

whipped out. The samples were placed back into the stainless-steel containers and were covered 

with tap water. The samples sat submerged in the water for a period of 48 hours (ASTM C642, 

p. 1). The samples were removed individually from the containers and were blotted with paper 

towel to achieve a fully saturated surface dried condition. The mass of each sample was recorded 

as the saturated after immersion mass (B) (ASTM C642, p. 1). This process was repeated until the 

difference between successive values of mass were less than 0.5% of the larger value (ASTM 

C642, p. 1).  

 
3.5.3 Saturated After Boiling State 
 

The stainless-steel containers holding the concrete specimen were placed on an electric double 

burner and were boiled for a duration of five hours (ASTM C642, p. 1). During this period, the 

level of the water was checked approximately every twenty minutes to ensure the concrete samples 

remained fully submerged. If the water level was too close to the top surface of the concrete 

specimen, more water was added. The added water was first boiled form an additional heat source. 

The concrete specimen were “cooled by natural heat loss for not less than 14 hours to a final 

temperature of 20°C to 25°C” (68°F to 77° F) (ASTM C642, p. 1). The samples were blotted dry 

with paper towels and the mass was recorded as the saturated mass after boiling (C) (ASTM C642, 

p. 1). 
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3.5.4 Immersed Apparent State 
 

The mass of the concrete samples immersed in water was determined. The concrete samples 

were individually placed into a metal basket suspend by a string in a large barrel of water. The 

sting was secured, through a hole in the table above, around the top plate of the scale (see Figure 

3-6). The mass was recorded as the immersed apparent mass (D) (ASTM C642, p. 1). 

 
3.6 Electric Resistivity  
 

ESR of the concrete samples was evaluated using a Giatec SurfTM testing apparatus consisting 

of a measuring device and a sample chamber (see Figure 3-8). This testing device uses the Wenner 

four electrode configuration with four evenly spaced electrodes in a straight line along the length 

of the sample (Giatec Scientific, p. 7). The two inner electrodes measure the electrical potential, 

V , created when AC current (I) flows from the exterior electrodes into the concrete (see Figure 

3-7) (Giatec Scientific, p. 7). There are four sets of electrodes perpendicular to each other at 90°  

(Giatec Scientific, p. 9). The sample holder was designed to facilitate “eight measurements of 

resistivity around the test sample (while) also reducing the evaporation rate during the test (Giatec 

Scientific, p. 9). The ESR for a semi-infinite, homogeneous concrete is calculated by Equation 4-5, 

where a is the distance between the equally spaced electrodes (Giatec Scientific, p. 7).  

The ends of the sixteen electrical probes were coated with a dab of conductive gel to aid in 

the transfer of applied voltage to the concrete specimen. Testing for ESR requires that the samples 

be conditioned such that they are in a fully saturated surface dry state. The concrete samples were 

already saturated from the absorption tests. The samples were blotted with paper towel before 

being placed into the testing apparatus. The top and bottom surface of the samples were aligned 

with the rubber supports (Giatec Scientific, p. 11). The top probes were put in contact with the 
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concrete specimen when the lid was tightly closed. Prior to testing, all the probes were visually 

examined for proper contact to the specimen. The test was then conducted using the SurfTM data 

monitoring software. The test was repeated three times for each sample. In between tests the 

concrete samples were taken out of the testing chamber, conductive gel was reapplied to each 

probe, and the specimen was slightly rotated before being placed back into the sample holder. An 

average was taken from the total 24 ESR measurements per concrete specimen (see Figure 7-1 

through Figure 7-15).    
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Figure 3-1: ASTM C215 Transverse Mode (ASTM C215, p. 3) 

 

 
Figure 3-2: Transverse frequency testing ASTM C215.  
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Figure 3-3: Oven-dried concrete samples being placed in a stainless-steel container to cool above DrieriteTM indicator desiccant 

crystals.  

 
Figure 3-4: Designation of each cut number per cylinder. 
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Figure 3-5: Oven-dried concrete samples sitting inside stainless-steel containers sealed with saran wrap which was secured with 

tap underneath the lip of the containers.  
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Figure 3-6: Mass of suspended concrete samples submerged in water per ASTM C642.  

 
Figure 3-7: Schematic view and concept of the test setup (Giatec Scientific, p. 7) 
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Figure 3-8: SurfTM testing apparatus. 

 

 

Figure 3-9: Relationship between ESR and chloride penetration. (Giatec Scientific, p. 5) 
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Figure 3-10: Cutting concrete cylinder samples with water-cooled diamond saw. 

 

 
Figure 3-11: Epoxied samples in preparation for proposed RCIP testing  
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4  Data Analysis 
 
4.1 Dynamic Modulus 
 

Calculation of the dynamic modulus involves three variables, specifically; C, the geometrical 

correction factor (m-1); M, the mass (kg); and n, the fundamental transverse frequency (Hz) (see 

Equation 4-1) (ASTM C215, p.5). The geometrical correction factor (C), as described by Equation 

4-2, is dependent on the correction factor (T) (ASTM C215, p.5).  

The correction factor (T) can be determined from Table 1 in ASTM C215, and is dependent 

on the Poisson’s ratio of the concrete specimen (ASTM C215, p.6). The concrete specimens were 

obtained from a previous study, Lin et al. (2012), in which the Poisson’s ratio was never 

determined. The Poisson’s ratio could be determined by ASTM C469. However, this would alter 

the microstructure of the samples because the standard requires the samples to be loaded to 40 

percent of the f’c (ASTM C469, p. 4). For stress levels between 30 to 50 percent of f’c, crack 

propagation is still considered stable, however, microcrack extension does occur solely within the 

ITZ (Mehta et al., 2006, p. 68).  Propagation does not yet extend into the cement matrix until stress 

levels of 50 to 75% f’c (Mehta et al., 2006, p. 68). Therefore, loading the samples to 40 percent of 

f’c, as recommended by the standard, would increase the permeability locally around the ITZ. 

Altering the microstructure of the samples in such a way would make any comparison between the 

results from one test standard to another nonsensical because permeability would increase. 

Therefore, instead of determining the Poisson’s ratio of the concrete, the value was assumed to be 

0.17. This is a reasonable assumption because for lower values of k/L the calculated correction 

factor T, and the resulting dynamic modulus, only varies by 2% for values or Poisson’s ratio 

varying from 0.17 to 0.26 (the upper and lower values for Poisson’s Ratio in ASTM C215 Table 

1).  
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Evaluating the average peak frequencies two of the values obtained, specifically that for C-28 

and C-40, can be considered outliers since their values are higher than 2345 Hz. This threshold 

was found by calculating the third quartile plus 1.5 times the interquartile range. These values 

cannot be dismissed, however, solely based off the peak frequencies. Recall that the compressive 

stress and number of F/T cycles applied to each sample during the study by Lin et al. (2012) is 

unknown. Therefore, it is possible that the peak frequencies for these samples were higher because 

they may have been subjected to less compressive stress or F/T cycles (or both).     

Some of the samples; C15, C28, C-29, C-40 and C-42; had average peak frequencies with 

significantly high standard deviations, as can be seen from Figure 4-1. Theses standard deviation 

ranged from 1301 to 2802 for samples C-15 and C-40, respectively. One possible cause for the 

high standard deviations, as previous discussed in section 3.4, could be attributed to the difficulties 

in using the fundamental transverse testing equipment. Alternatively, as recommended  in ASTM 

C215, the use of a real-time graphic display, such as an oscilloscope, could have aided in finding 

more accurate results (ASTM C215, p. 2). It could be argued that the dynamic moduli for these 

samples are dismissible due to their extremely high standard deviations. Representing only the 

statistically sound data, the dynamic modulus results (see Table 4-1) have been consolidated as 

seen in Table 4-2. The remaining discussion regarding dynamic modulus results will be focus 

exclusively on this consolidated data. 

Considering only the consolidated results, the average of the peak frequency was found to be 

2230 Hz with a standard deviation of ±486 Hz. The peak frequencies ranged from 1438 Hz to 3308 

Hz as observed from samples C-34 and C-17, respectively. The dynamic moduli were calculated 

by Equation 4-1, where; n is the average peak frequency (Hz), M is the mass (kg), and C is a 

dimensional factor calculated by Equation 4-2; the results of which can be seen tabulated in Table 
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4-2. The average dynamic modulus was 5.24E06 KPa with a standard deviation of ±2.18E06 KPa 

and a range of 2.06E06 KPa through 9.17E06 KPa for samples C-34 and C-17, respectively. Such 

a large variance in average peak frequency and dynamic modulus can most likely be attributed to 

the variability in applied compressive stresses and F/T cycles which the samples were subjected 

to during the study by Lin et al. (2012). 

A comparison between the consolidated data for dynamic modulus and PV can be seen in 

Figure 4-9. In this figure the distribution of data and R2 indicate an extremely weak relationship 

between dynamic modulus and PV. A trendline has been generated, however, to do the large 

variation in data the accuracy of such a trendline is not highly reassuring. The trendline shows that 

the two variables are directly proportional which cannot possibly be the case. One would expect 

that as the percent of permeable voids increases, that the dynamic modulus would decrease. As the 

volume of the pore network increases from microcrack interconnectivity, the dynamic modulus 

should decrease. It is possible the sample size was not large enough to develop an accurate 

depiction on the behavior of these two variables in relation to each other. Such is also the case for 

the comparison between the average surface resistivity and the dynamic modules (see Figure 4-10). 

Here again, a large variation in data does not provide a very reassuring relationship between the 

two parameters.  

 
4.2 Water Absorption 
 

PV was calculated from the mass of each concrete specimen under four different saturation 

states; oven-dried, saturated after immersion, saturated after boiling, and immersed apparent. The 

mass of the cylinders and disks for each saturation state can be seen in Table 4-3 and Table 4-5, 

respectively. The calculated values for; the absorption after immersion (%) (ASTM C642 Eqn. 8), 
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absorption after immersion and boiling (%) (ASTM C642 Eqn. 9), bulk dry density (Mg/m3) 

(ASTM C642 Eqn. 10), bulk density after immersion (Mg/m3) (ASTM C642 Eqn. 11), bulk 

density after immersion and boiling (Mg/m3) (ASTM C642 Eqn. 12), apparent density (Mg/m3) 

(ASTM C642 Eqn. 13), and PV (ASTM C642  Eqn. 14); can be seen for the cylinders and disks 

in Table 4-4 and Table 4-6, respectively.  

Evaluating the effects of mass at various saturation states on PV, some interesting 

observation can be made. For masses A, B, C, and D (see Figure 4-4 and Figure 4-5). PV decreases 

as the mass of the samples in each saturation state increases. Regression analysis was used to 

determine a line of best fit for each mass at their respective saturation state. The relationship 

between mass and PV is strongest when compared to the oven-dried mass (A) with R2 equal to 

85.4%. As the saturation levels of the cylindrical concrete specimen increase, the strength of R2 

decreases from; 59.6% for mass B, to 53.2% for mass C. There is a slight increase in the R2 for the 

immersed apparent mass (D) at 60.4%. Therefore, PV is most dependent on mass A and D. 

Hopefully the regression analysis and general equations provided for the cylinder samples will 

serve others. The result obtained by others performing similar research of mechanically loaded, 

F/T concrete could be checked against the regression analysis and general equations. Note, caution 

should be exercised when comparing results since the population size of this group is rather small.     

An example of the inversely proportional relationship between PV and mass can be seen 

with sample C-42. This specimen had the highest oven-dry mass at 3915.0 g and the lowest percent 

gain in absorption after immersion of 2.7%. Therefore, it makes sense that sample C-42 had the 

lowest PV at approximately 7.0%. Because the volume is constant across the cylinder samples, the 

density of C-42 would therefore be higher as well. In fact, C-42 does have the highest bulk-dry 
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density of 2.34 Mg/m3. This indicates that not only does C-42 have less voids, but possibly that 

the voids are less interconnected as reflected by its low absorption after immersion of 2.7%.  

It should be mentioned that after four successive attempts to dry samples; D11-1, D14-2, 

D15-1, D15-2, D28-2, D34-2, D35-1, D42-1, and D42-2, per ASTM C642, the successive values 

for the oven-dry mass were not less than 0.5% as specified by the standard. The reason for such a 

long drying period is because the disks had been recently saturated. The source of the saturation 

was from the water used to cool the diamond cutting blade when the cylinder samples were cut 

and divided into the disk samples. The highest deviation from the 0.5% threshold value was 0.53% 

from disk samples; D15-2, D28-2, and D35-1. Due to time constraints, the last recorded oven-

dried mass was designated as the mass value A for each sample. Had an additional 24 hours of 

oven drying been provided, as specified by the standard, the percent increase in mass would have 

been well below the threshold value of 0.5%. From experience, given an additional 24 hours, the 

mass would have been the same regardless. Therefore, these samples were moved onto the 

saturated after immersion stage in testing.  

 
4.3 Electric Resistivity  
 

Each concrete specimen was tested three times to determine the electrical surface resistance. 

Four sets of probes were orientated perpendicularly along the length of the specimen at 0, 90, 

180, and 270. Each set of probes were arranged in a Wenner four electrode configuration and 

measured the potential drop in voltage along the concrete specimen (Giatec Scientific, p. 7). An 

average of the twenty-four surface resistance (R) measurements were calculated per specimen (see 

second column of Table 4-7). A geometrical factor (k) was applied to determine the average 

surface resistivity (ρ) (see Equation 4-6). For a 4” x 8” cylinder the geometrical factor, which is 
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dependent on probe spacing, was calculated to be 1.95. By multiplying the geometrical factor (k) 

by the surface resistance (R), the average surface resistivity (ρ) per concrete specimen was 

calculated. The calculated ρ-values per cylinder can be seen in the third column of Table 4-7 and 

in Figure 4-6. 

The data generated in for each of the cylinder samples can be seen from Figure 7-1 through 

Figure 7-15 of the appendix. The average calculated resistivity was found to be 18.8 kΩ/cm with 

a standard deviation of ±3.1 kΩ/cm. The values ranged from 15.0 kΩ/cm for sample C-14, and 

25.7 for sample C-11. The average electrical resistivity is related to the chloride penetration by 

Figure 3-9, as determined by ASTM C1202. Here the electrical resistivity is divided into five 

categories relating to chloride penetration; high, moderate, low, very low, and negligible. It was 

found that all the cylinder samples had an equivalent chloride penetration ranging from moderate 

to high. This data provides a good indication of what chloride penetration values could be expected 

from the proposed RCIP testing on the disks cut from these cylinders. Assuming the behavior of 

each individual disk will reflect that of the cylinders from which they were cut, it is likely that the 

disk samples will have chloride penetration values of 2,000 to over 4000 coulombs.  

Evaluating the relationship between ESR and PV we can see from Figure 4-7 that the two 

are inversely proportional. As PV decreases there would be less saturated pore space to carry the 

electrical charge, therefore, one would expect that the ESR would decrease. R2 for the two 

variables was 31%. From Figure 4-7, two of the cylinder samples a very clearly outliers. Excluding 

these two samples, C-14 and C-42, the relationship becomes even stronger with R2 equal to 63.5% 

(see Figure 4-8).  
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Figure 4-1: Average Peak Frequency (Hz) recorded per sample according to ASTM C215 with standard deviation error. 

 

 
Figure 4-2: Dynamic Modulus per concrete cylinder sample calculated per ASTM C215. 
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Figure 4-3: PV calculated per concrete sample according to ASTM C642. 

 

 
Figure 4-4: Oven-dried mass (A), saturated mass after immersion (B), saturated mass after boiling (C) for cylindrical samples. 
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Figure 4-5: Immersed apparent mass (D) for cylindrical samples. 

 

 
Figure 4-6: Average resistivity of each cylindrical sample calculated per Equation 4-6. 
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Figure 4-7: Holistic comparison between PV results obtained from ASTM C642 for water absorption and the average surface 

resistivity.   

 

 
Figure 4-8: Comparison between PV results obtained from ASTM C642 for water absorption and the average surface resistivity, 

excluding two outliers.  
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Figure 4-9: Consolidated data comparing PV obtained from ASTM C64, with the dynamic modulus obtained from ASTM C215 

 

 
Figure 4-10: Consolidated data for comparison of the average surface resistivity and the dynamic modulus obtained from ASTM 

C215  
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Sample  
M 

(kg.) 
n 

(Hz) L (m) d (m) K/L T1 C1 (m-1) E (ksi) E (kPa) 
C-06 3.858 2645 0.2032 0.1024 0.1260 2.129 260.878 1021.505 7.043E+06 
C-11 3.914 2201 0.2032 0.1019 0.1254 2.118 264.943 728.610 5.024E+06 
C-14 3.874 1773 0.2020 0.1021 0.1263 2.135 260.302 459.777 3.170E+06 
C-15 3.893 3035 0.2019 0.1024 0.1268 2.142 257.856 1340.759 9.244E+06 
C-16 3.883 1733 0.2020 0.1021 0.1263 2.134 260.514 440.769 3.039E+06 
C-17 3.865 3008 0.2024 0.1020 0.1259 2.128 262.263 1329.891 9.169E+06 
C-21 3.868 2456 0.2021 0.1020 0.1262 2.132 261.274 883.780 6.093E+06 
C-22 3.868 2443 0.2027 0.1021 0.1260 2.128 261.822 876.354 6.042E+06 
C-28 3.878 4014 0.2016 0.1020 0.1264 2.136 260.284 2358.212 1.626E+07 
C-29 3.888 2989 0.2024 0.1018 0.1257 2.125 263.501 1327.523 9.153E+06 
C-30 3.868 2019 0.2021 0.1021 0.1262 2.133 260.881 596.305 4.111E+06 
C-34 3.846 1438 0.2016 0.1020 0.1265 2.137 259.746 299.445 2.065E+06 
C-35 3.852 2581 0.2016 0.1020 0.1265 2.137 260.039 967.942 6.674E+06 
C-40 3.906 4033 0.2021 0.1017 0.1258 2.126 263.301 2426.176 1.673E+07 
C-42 3.903 3438 0.2011 0.1016 0.1263 2.134 261.851 1751.706 1.208E+07 

Table 4-1: Holistic data for dynamic modulus results obtained from ASTM C215. 

 

Sample  
M 

(kg.) 
n 

(Hz) 
L 

(m) d (m) K/L T1 C1 (m-1) E (ksi) E (kPa) 
C-06 3.858 2645 0.203 0.1024 0.126 2.13 260.8775 1021.505482 7043032.07 
C-11 3.914 2201 0.203 0.1019 0.125 2.12 264.9433 728.6096618 5023586.57 
C-14 3.8741 1773 0.202 0.1021 0.126 2.13 260.3023 459.7771434 3170051.68 
C-16 3.8827 1733 0.202 0.1021 0.126 2.13 260.5144 440.7688014 3038993.78 
C-17 3.8653 3008 0.202 0.1020 0.126 2.13 262.2629 1329.891345 9169277.66 
C-21 3.868 2456 0.202 0.1020 0.126 2.13 261.2744 883.7801733 6093449.54 
C-22 3.8683 2443 0.203 0.1021 0.126 2.13 261.8216 876.3539926 6042247.83 
C-30 3.868 2019 0.202 0.1021 0.126 2.13 260.8814 596.3045585 4111375.03 
C-34 3.8457 1438 0.202 0.1020 0.127 2.14 259.7456 299.4451765 2064601.73 
C-35 3.852 2581 0.202 0.1020 0.126 2.14 260.0391 967.9419189 6673724.32 

Table 4-2: Consolidated data for dynamic modulus results obtained from ASTM C215. 
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SAMPLE A (g) B (g) C (g) D (g) 

C-06 3875.0 4015.0 4020.0 2365.0 

C-11 3925.0 4050.0 4055.0 2395.0 
C-14 3895.0 4025.0 4030.0 2380.0 

C-15 3865.0 4010.0 4020.0 2365.0 
C-16 3890.0 4025.0 4030.0 2370.0 

C-17 3825.0 3985.0 3995.0 2340.0 
C-21 3835.0 3990.0 4005.0 2345.0 

C-22 3825.0 3985.0 4000.0 2340.0 
C-28 3860.0 4005.0 4015.0 2355.0 

C-29 3860.0 4010.0 4020.0 2360.0 
C-30 3825.0 3990.0 4005.0 2350.0 

C-34 3810.0 3970.0 3980.0 2325.0 
C-35 3820.0 3975.0 3985.0 2335.0 

C-40 3880.0 4030.0 4040.0 2380.0 

C-42 3915.0 4020.0 4030.0 2375.0 
Table 4-3: Results for the cylinders tested per ASTM C642; Standard Test Method for Density, Absorption, and Voids in 

Hardened Concrete with; (A) the oven-dry mass, (B) the final surface-dry mass after immersion, (C) the soaked, boiled, surface-
dried mass, (D) the apparent mass.   

 

SAMPLE 
Eqn.(8) 

(%) Eqn.(9) (%) 

g1 
Eqn.(10) 

(%) Eqn.(11) Eqn.(12) 
g2 

Eqn.(13) 
Eqn.(14) 

(%) 

C-06 3.613 3.742 2.341 2.426 2.429 2.566 8.761 
C-11 3.185 3.312 2.364 2.440 2.443 2.565 7.831 

C-14 3.338 3.466 2.361 2.439 2.442 2.571 8.182 
C-15 3.752 4.010 2.335 2.423 2.429 2.577 9.366 

C-16 3.470 3.599 2.343 2.425 2.428 2.559 8.434 
C-17 4.183 4.444 2.3f11 2.408 2.414 2.576 10.272 

C-21 4.042 4.433 2.310 2.404 2.413 2.574 10.241 
C-22 4.183 4.575 2.304 2.401 2.410 2.576 10.542 

C-28 3.756 4.016 2.325 2.413 2.419 2.565 9.337 
C-29 3.886 4.145 2.325 2.416 2.422 2.573 9.639 

C-30 4.314 4.706 2.311 2.411 2.420 2.593 10.876 
C-34 4.199 4.462 2.302 2.399 2.405 2.566 10.272 

C-35 4.058 4.319 2.315 2.409 2.415 2.572 10.000 
C-40 3.866 4.124 2.337 2.428 2.434 2.587 9.639 

C-42 2.682 2.937 2.366 2.429 2.435 2.542 6.949 
Table 4-4: Results for the cylinders tested per ASTM C642; Standard Test Method for Density, Absorption, and Voids in 

Hardened Concrete with; Eqn. (8) absorption after immersion (%), Eqn. (9) absorption after immersion and boiling (%), Eqn. 
(10) bulk dry density (Mg/m3), Eqn. (11) bulk density after immersion (Mg/m3), Eqn. (12) bulk density after immersion and 

boiling (Mg/m3), Eqn. (13) apparent density (Mg/m3), and Eqn. (14) PV . 
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SAMPLE A (g) B (g) C (g) D (g)   SAMPLE A (g) B (g) C (g) D (g) 

D-1B 870 905 910 525  D-8H 950 990 995 590 

D-2B 895 930 940 545  D-9H 975 1015 1025 600 
D-3B 835 865 870 510  D06-3 795 835 835 490 

D-4B 870 915 920 525  D06-4 880 925 925 545 
D-5B 890 920 925 540  D11-1 965 1015 1015 595 

D-6B 865 905 910 525  D11-2 995 1040 1045 615 
D-7B 890 930 935 545  D11-3 855 895 895 525 

D-8B 975 1010 1015 595  D11-4 845 880 880 520 
D-9B 920 955 960 560  D14-1 975 1025 1025 605 

D-1C 875 910 920 535  D14-2 975 1025 1030 600 
D-2C 945 975 985 575  D14-3 885 930 930 540 

D-3C 860 895 905 520  D14-4 795 825 825 490 
D-4C 905 935 945 550  D15-1 970 1015 1020 600 

D-5C 920 950 955 550  D15-2 945 995 1000 580 
D-6C 900 930 935 545  D15-3 855 890 895 525 

D-7C 915 945 950 550  D15-4 845 875 880 520 
D-8C 910 945 945 555  D16-1 960 1005 1010 590 

D-9C 925 955 960 555  D16-2 975 1020 1020 600 
D-1D 950 995 1005 585  D16-3 815 855 855 500 

D-2D 945 990 995 585  D16-4 895 930 930 555 
D-3D 925 980 985 575  D17-1 965 1010 1010 590 

D-4D 840 875 880 525  D17-2 980 1025 1030 605 
D-5D 900 935 940 555  D17-3 845 885 885 520 

D-6D 950 990 995 590  D17-4 810 845 845 495 
D-7D 980 1020 1030 605  D21-2 965 1010 1010 595 

D-8D 970 1010 1015 600  D21-3 905 945 945 555 
D-1E 895 935 945 545  D21-4 820 850 855 500 

D-2E 880 915 920 535  D22-2 975 1020 1025 600 
D-3E 870 910 915 520  D22-3 805 840 845 495 

D-4E 915 960 965 555  D22-4 870 905 905 535 
D-5E 880 920 925 530  D28-1 950 995 1000 585 

D-6E 845 885 890 520  D28-2 950 1000 1005 590 
D-7E 890 930 940 540  D28-3 895 930 935 545 

D-8E 880 915 920 535  D28-4 790 820 820 485 
D-9E 845 880 890 515  D29-1 980 1025 1030 605 

D-1F 970 1010 1015 600  D29-2 970 1015 1020 600 
D-2F 840 875 880 520  D29-3 830 870 870 510 

D-3F 865 905 910 540  D29-4 840 875 880 515 
D-4F 965 1005 1010 595  D30-1 935 980 985 580 

D-5F 970 1010 1015 600  D30-2 975 1020 1025 600 
D-6F 965 1010 1015 595  D30-3 800 845 845 490 

D-7F 970 1010 1015 595  D30-4 890 930 930 550 
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D-8F 955 995 1000 590  D34-1 925 970 975 565 

D-9F 935 970 975 575  D34-2 970 1015 1020 595 
D-1G 870 905 910 530  D34-3 890 930 935 545 

D-2G 855 895 905 525  D34-4 795 830 830 480 
D-4G 895 930 940 550  D35-1 950 1000 1005 585 

D-5G 895 930 940 545  D35-2 980 1025 1030 605 
D-6G 860 895 905 525  D35-3 855 890 895 520 

D-7G 900 935 940 545  D35-4 795 830 835 485 
D-8G 870 905 915 525  D40-1 950 995 1000 585 

D-9G 890 925 930 540  D40-2 985 1030 1035.5 610 
D-1H 965 1010 1020 600  D40-3 840 880 885 510 

D-2H 975 1015 1020 605  D40-4 865 900 905 525 
D-3H 990 1025 1035 605  D42-1 975 1015 1020 605 

D-4H 815 850 855 510  D42-2 985 1030 1030 610 
D-5H 985 1020 1025 605  D42-3 850 890 895 515 

D-6H 960 995 1000 585  D42-4 825 855 860 505 
D-7H 985 1025 1030 610             

Table 4-5: Results for the disks tested per ASTM C642; Standard Test Method for Density,Absorption, and Voids in Hardened 
Concrete with; (A) the oven-dry mass, (B) the final surface-dry mass after immersion, (C) the soaked, boiled, surface-dried mass, 

(D) the apparent mass.  

 

SAMPLE 
Eqn.(8) 

(%) 
Eqn.(9) 

(%) 

g1 
Eqn.(10) 

(%) Eqn.(11) Eqn.(12) 
g2 

Eqn.(13) 
Eqn.(14) 

(%) 

D-1B 4.023 4.598 2.260 2.351 2.364 2.522 10.390 
D-2B 3.911 5.028 2.266 2.354 2.380 2.557 11.392 

D-3B 3.593 4.192 2.319 2.403 2.417 2.569 9.722 
D-4B 5.172 5.747 2.203 2.316 2.329 2.522 12.658 

D-5B 3.371 3.933 2.312 2.390 2.403 2.543 9.091 
D-6B 4.624 5.202 2.247 2.351 2.364 2.544 11.688 

D-7B 4.494 5.056 2.282 2.385 2.397 2.580 11.538 
D-8B 3.590 4.103 2.321 2.405 2.417 2.566 9.524 

D-9B 3.804 4.348 2.300 2.388 2.400 2.556 10.000 
D-1C 4.000 5.143 2.273 2.364 2.390 2.574 11.688 

D-2C 3.175 4.233 2.305 2.378 2.402 2.554 9.756 
D-3C 4.070 5.233 2.234 2.325 2.351 2.529 11.688 

D-4C 3.315 4.420 2.291 2.367 2.392 2.549 10.127 
D-5C 3.261 3.804 2.272 2.346 2.358 2.486 8.642 

D-6C 3.333 3.889 2.308 2.385 2.397 2.535 8.974 
D-7C 3.279 3.825 2.288 2.363 2.375 2.507 8.750 

D-8C 3.846 3.846 2.333 2.423 2.423 2.563 8.974 
D-9C 3.243 3.784 2.284 2.358 2.370 2.500 8.642 

D-1D 4.737 5.789 2.262 2.369 2.393 2.603 13.095 
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D-2D 4.762 5.291 2.305 2.415 2.427 2.625 12.195 

D-3D 5.946 6.486 2.256 2.390 2.402 2.643 14.634 
D-4D 4.167 4.762 2.366 2.465 2.479 2.667 11.268 

D-5D 3.889 4.444 2.338 2.429 2.442 2.609 10.390 
D-6D 4.211 4.737 2.346 2.444 2.457 2.639 11.111 

D-7D 4.082 5.102 2.306 2.400 2.424 2.613 11.765 
D-8D 4.124 4.639 2.337 2.434 2.446 2.622 10.843 

D-1E 4.469 5.587 2.238 2.338 2.363 2.557 12.500 
D-2E 3.977 4.545 2.286 2.377 2.390 2.551 10.390 

D-3E 4.598 5.172 2.203 2.304 2.316 2.486 11.392 
D-4E 4.918 5.464 2.232 2.341 2.354 2.542 12.195 

D-5E 4.545 5.114 2.228 2.329 2.342 2.514 11.392 
D-6E 4.734 5.325 2.284 2.392 2.405 2.600 12.162 

D-7E 4.494 5.618 2.225 2.325 2.350 2.543 12.500 
D-8E 3.977 4.545 2.286 2.377 2.390 2.551 10.390 

D-9E 4.142 5.325 2.253 2.347 2.373 2.561 12.000 
D-1F 4.124 4.639 2.337 2.434 2.446 2.622 10.843 

D-2F 4.167 4.762 2.333 2.431 2.444 2.625 11.111 
D-3F 4.624 5.202 2.338 2.446 2.459 2.662 12.162 

D-4F 4.145 4.663 2.325 2.422 2.434 2.608 10.843 
D-5F 4.124 4.639 2.337 2.434 2.446 2.622 10.843 

D-6F 4.663 5.181 2.298 2.405 2.417 2.608 11.905 
D-7F 4.124 4.639 2.310 2.405 2.417 2.587 10.714 

D-8F 4.188 4.712 2.329 2.427 2.439 2.616 10.976 
D-9F 3.743 4.278 2.338 2.425 2.438 2.597 10.000 

D-1G 4.023 4.598 2.289 2.382 2.395 2.559 10.526 
D-2G 4.678 5.848 2.250 2.355 2.382 2.591 13.158 

D-4G 3.911 5.028 2.295 2.385 2.410 2.594 11.538 
D-5G 3.911 5.028 2.266 2.354 2.380 2.557 11.392 

D-6G 4.070 5.233 2.263 2.355 2.382 2.567 11.842 
D-7G 3.889 4.444 2.278 2.367 2.380 2.535 10.127 

D-8G 4.023 5.172 2.231 2.321 2.346 2.522 11.538 
D-9G 3.933 4.494 2.282 2.372 2.385 2.543 10.256 

D-1H 4.663 5.699 2.298 2.405 2.429 2.644 13.095 
D-2H 4.103 4.615 2.349 2.446 2.458 2.635 10.843 

D-3H 3.535 4.545 2.302 2.384 2.407 2.571 10.465 
D-4H 4.294 4.908 2.362 2.464 2.478 2.672 11.594 

D-5H 3.553 4.061 2.345 2.429 2.440 2.592 9.524 
D-6H 3.646 4.167 2.313 2.398 2.410 2.560 9.639 

D-7H 4.061 4.569 2.345 2.440 2.452 2.627 10.714 
D-8H 4.211 4.737 2.346 2.444 2.457 2.639 11.111 

D-9H 4.103 5.128 2.294 2.388 2.412 2.600 11.765 
D06-3 5.031 5.031 2.304 2.420 2.420 2.607 11.594 
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D06-4 5.114 5.114 2.316 2.434 2.434 2.627 11.842 

D11-1 5.181 5.181 2.298 2.417 2.417 2.608 11.905 
D11-2 4.523 5.025 2.314 2.419 2.430 2.618 11.628 

D11-3 4.678 4.678 2.311 2.419 2.419 2.591 10.811 
D11-4 4.142 4.142 2.347 2.444 2.444 2.600 9.722 

D14-1 5.128 5.128 2.321 2.440 2.440 2.635 11.905 
D14-2 5.128 5.641 2.267 2.384 2.395 2.600 12.791 

D14-3 5.085 5.085 2.269 2.385 2.385 2.565 11.538 
D14-4 3.774 3.774 2.373 2.463 2.463 2.607 8.955 

D15-1 4.639 5.155 2.310 2.417 2.429 2.622 11.905 
D15-2 5.291 5.820 2.250 2.369 2.381 2.589 13.095 

D15-3 4.094 4.678 2.311 2.405 2.419 2.591 10.811 
D15-4 3.550 4.142 2.347 2.431 2.444 2.600 9.722 

D16-1 4.687 5.208 2.286 2.393 2.405 2.595 11.905 
D16-2 4.615 4.615 2.321 2.429 2.429 2.600 10.714 

D16-3 4.908 4.908 2.296 2.408 2.408 2.587 11.268 
D16-4 3.911 3.911 2.387 2.480 2.480 2.632 9.333 

D17-1 4.663 4.663 2.298 2.405 2.405 2.573 10.714 
D17-2 4.592 5.102 2.306 2.412 2.424 2.613 11.765 

D17-3 4.734 4.734 2.315 2.425 2.425 2.600 10.959 
D17-4 4.321 4.321 2.314 2.414 2.414 2.571 10.000 

D21-2 4.663 4.663 2.325 2.434 2.434 2.608 10.843 
D21-3 4.420 4.420 2.321 2.423 2.423 2.586 10.256 

D21-4 3.659 4.268 2.310 2.394 2.408 2.563 9.859 
D22-2 4.615 5.128 2.294 2.400 2.412 2.600 11.765 

D22-3 4.348 4.969 2.300 2.400 2.414 2.597 11.429 
D22-4 4.023 4.023 2.351 2.446 2.446 2.597 9.459 

D28-1 4.737 5.263 2.289 2.398 2.410 2.603 12.048 
D28-2 5.263 5.789 2.289 2.410 2.422 2.639 13.253 

D28-3 3.911 4.469 2.295 2.385 2.397 2.557 10.256 
D28-4 3.797 3.797 2.358 2.448 2.448 2.590 8.955 

D29-1 4.592 5.102 2.306 2.412 2.424 2.613 11.765 
D29-2 4.639 5.155 2.310 2.417 2.429 2.622 11.905 

D29-3 4.819 4.819 2.306 2.417 2.417 2.594 11.111 
D29-4 4.167 4.762 2.301 2.397 2.411 2.585 10.959 

D30-1 4.813 5.348 2.309 2.420 2.432 2.634 12.346 
D30-2 4.615 5.128 2.294 2.400 2.412 2.600 11.765 

D30-3 5.625 5.625 2.254 2.380 2.380 2.581 12.676 
D30-4 4.494 4.494 2.342 2.447 2.447 2.618 10.526 

D34-1 4.865 5.405 2.256 2.366 2.378 2.569 12.195 
D34-2 4.639 5.155 2.282 2.388 2.400 2.587 11.765 

D34-3 4.494 5.056 2.282 2.385 2.397 2.580 11.538 
D34-4 4.403 4.403 2.271 2.371 2.371 2.524 10.000 
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D35-1 5.263 5.789 2.262 2.381 2.393 2.603 13.095 

D35-2 4.592 5.102 2.306 2.412 2.424 2.613 11.765 
D35-3 4.094 4.678 2.280 2.373 2.387 2.552 10.667 

D35-4 4.403 5.031 2.271 2.371 2.386 2.565 11.429 
D40-1 4.737 5.263 2.289 2.398 2.410 2.603 12.048 

D40-2 4.569 5.127 2.315 2.421 2.434 2.627 11.868 
D40-3 4.762 5.357 2.240 2.347 2.360 2.545 12.000 

D40-4 4.046 4.624 2.276 2.368 2.382 2.544 10.526 
D42-1 4.103 4.615 2.349 2.446 2.458 2.635 10.843 

D42-2 4.569 4.569 2.345 2.452 2.452 2.627 10.714 
D42-3 4.706 5.294 2.237 2.342 2.355 2.537 11.842 

D42-4 3.636 4.242 2.324 2.408 2.423 2.578 9.859 
Table 4-6: Result for the disks tested per ASTM C642; Standard Test Method for Density,Absorption, and Voids in Hardened 

Concrete with; Eqn. (8) absorption after immersion (%), Eqn. (9) absorption after immersion and boiling (%), Eqn. (10) bulk dry 
density (Mg/m3), Eqn. (11) bulk density after immersion (Mg/m3), Eqn. (12) bulk density after immersion and boiling (Mg/m3), 

Eqn. (13) apparent density (Mg/m3), and Eqn. (14) PV 

 

SPECIMEN  
AVG. 

SURFACE 
AVG. 
RES. Chloride 

ID 
RES. 

(kΩ/cm) (kΩ/cm) Penetration 

C-06 10.6 20.63 Moderate 
C-11 13.2 25.73 Moderate 

C-14 7.7 15.00 High 
C-15 11.1 21.67 Moderate 

C-16 11.3 22.03 Moderate 
C-17 9.4 18.37 High 

C-21 10.4 20.33 Moderate 
C-22 7.9 15.50 High 

C-28 8.5 16.63 High 
C-29 8.4 16.40 High 

C-30 8.6 16.73 High 
C-34 8.0 15.67 High 

C-35 8.4 16.47 High 
C-40 9.7 19.00 High 

C-42 10.8 21.07 Moderate 
Table 4-7: Results of the SurfTM testing. Average ESR (KΩ/cm), average surface resistance and corresponding chloride 

penetrability   
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ܧ ܿ݅݉ܽ݊ݕܦ =  ଶ݊ܯܥ

Equation 4-1: Formula for calculating the dynamic modulus (E); where C is the geometrical factor, M is the mass (kg), and n is 
the fundamental transverse frequency (Hz) (ASTM C215, p.5). 

 

ܥ = 1.6067
ଷܶܮ
݀ସ  

Equation 4-2: Geometrical correction factor (C); where L is the length of the specimen (m), T is the correction factor dependent 
on the radius of gyration (K), and d is the diameter (m) (ASTM C215, p.5). 

 

ܭ = ݀/4 

Equation 4-3: Radius of gyration (K) for a cylinder; where d is the diameter (m) (ASTM C215, p.5). 

 

ܸܲ(%) = ൬
݃ଶ − ݃ଵ

݃ଶ
൰ ∗ 100 

Equation 4-4: PV (ASTM C642) 

 

ߩ = ܽߨ2
ܸ
ܫ    

Equation 4-5: ESR for semi-infinite, homogeneous concrete; where a is the distance between the equally spaced electrodes, V is 
the voltage, and I is the current (Giatec Scientific, p.7) . 

 

ߩ = ܴ݇ 
Equation 4-6: Where ρ is the resistivity, k is the geometrical factor, and R is the measured resistance.  

 

݃ଵ =  ൬
ܣ

ܥ − ൰ܦ  ߩ

Equation 4-7: Bulk density-dry (g1) where; A is the oven-dried mass (g), C is the saturated mass after boiling (g), D is the 
immersed apparent mass (g), and ρ is the density of water (g/cm3) 

 

݃ଶ =  ൬
ܣ

ܣ − ൰ܦ  ߩ

Equation 4-8: Apparent density (g2) where; A is the oven-dried mass (g), D is the immersed apparent mass (g), and ρ is the 
density of water (g/cm3) 
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ܸܲ =  ቀ௚మି௚భ
௚మ

ቁ   100ݔ

Equation 4-9: PV where; g1 is the bulk density-dry, and g2 is the apparent density per ASTM C642.
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5 Conclusion  
 
5.1 Summary  
 

Currently there is no efficient way of measuring the deterioration of the concrete in bridge 

decks. The existing standard tests such as, ASTM C215, ASTM C1202, and ESR, are mainly for 

measuring the deterioration of concrete samples in laboratories. Meanwhile, some of these tests 

have disadvantages. Specifically, some tests take too long and cause permeant damage to the 

concrete, or make testing of field samples difficult. Alternatively, water absorption, which has 

been shown in Lin et al. (2012) to relate to the amount of charge passed in RCIP testing, could be 

used to determine the durability of concrete. Several concerns were identified with the previous 

study by Lin et al. (2012), therefore, the claim that water absorption is related to the durability of 

concrete, specifically mechanically loaded F/T concrete, needed further validation.  

To provide supporting evidence for the relationship between water absorption and concrete 

durability, fifteen cylinders were tested for dynamic modulus, water absorption and ESR. These 

cylinders were previously exposed to compressive stresses of varying percentages of f’c and 

varying numbers of F/T cycles. The specific compressive stresses and number of F/T cycles per 

sample is unknown and the study is therefore blind. Setting up the experiment in such a way 

eliminates any possible bias from the obtained results.  

The cylinders tested for dynamic modulus using the contact driven forced resonance method 

(ASTM C215, 1). A driving unit forced vibrations ranging from 1k through 10k hertz through the 

samples. The vibrations were measured by an accelerometer which was mounted at the end of the 

samples. The dynamic modulus was calculated using the peak frequency at which the cylinders 

resonated, as indicated by the highest output reading on the needle indicator.  
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The concrete cylinders were tested for absorption per ASTM 642. The oven-dried mass (A) 

was determined after the samples were oven-dried for a period of 24 hours and sequentially cooled 

by natural heat loss to 25°C (77°F). The cylinders were soaked in water for a period of 48 hours 

after which the mass after immersion (B) was recorded. The cylinders were boiled for five hours 

and subsequently cooled for no less than fourteen hours. The saturated mass after boiling mass (C) 

was recorded. The samples were placed in a metal basket suspended in water by a chain secured 

around the top plate of a scale. The mass of the samples was recorded as the immersed apparent 

mass (D). PV was calculated from the bulk-dry density and the apparent density. Linear regression 

analysis was used to determine the relationship of each mass recorded at various saturation states 

(e.g. A, B, C, D) to the resulting PV and to determine general best fit equations.  

The ESR of the concrete samples was determined using a SURFTM testing apparatus which 

consisted of a chamber and data acquisition system. The average surface resistivity was calculated 

by taking the average of 24 surface resistance measurements and multiplying by a geometrical 

factor.  

 
5.2 Results 
 

Based on the limited tests conducted in this study, the following observations can be made: 

1. ASTM C1202 was not conducted on the samples, however, the results obtained from ESR 

testing can provide an indication of what results may be expected from RCIP tests, (related 

by table Figure 3-9). All the concrete cylinder samples had moderate to high chloride 

penetration.  
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2. A relationship between the dynamic modulus and ESR; and dynamic modulus and PV 

could not be determined. It is possible that a larger population size could more accurately 

reflect the behavior of these variables in relation to dynamic modulus.  

3. Linear regression and general equations were generated (see Figure 4-4 and Figure 4-5) 

from the absorption tests. Others (researching mechanically loaded F/T concrete) may find 

this information useful to check their own preliminary results. Cation should be exercised, 

however, due to the small population size of the study.  

4. The oven-dried mass (A) and the apparent mass (D) had the strongest relationship to PV 

as indicated by R2 of 85.4% and 60.4%, respectively. 

5. Excluding the two outliers, a very strong relationship, with R2 equal to 63.5%, was 

identified between VP and ESR. This clearly reinforces the original claim made by Lin et 

al. (2012) that water absorption is related to concrete durability.   

 
5.3 Further Research 
 

The observations and conclusions from this study should be further verified in future studies. 

Specifically; 

1. Absorptions tests should be carried out on concrete extracted from actual bridge deck to 

further examine the effects of overweight vehicles on the early deterioration of bridge deck. 

2. The relationship between ESR, dynamic modulus, and water absorption should be 

examined with a larger population size. 

3. Water absorption should be compared to tests for RCIP, another generally accepted test for 

the durability of concrete. 
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The design of concrete bridges is primarily focused on strength characteristics. However, it is 

often the case that durability characteristics, specifically early deterioration of the bridge deck, 

requires expensive repairs before the designed service life of the bridge can come to term. Water 

absorption, which is relatively quicker and has no restrictions on specimen size, could be used to 

determine the damage to bridge deck cause by overweight vehicles. Hopefully, if more is known 

about the relationship between early bridge deck deterioration and overweight vehicles, then policy 

change regarding the cost of overweight vehicle permits could be enacted. 
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7 Appendix 
 
7.1 ESR Figures 
 

 
Figure 7-1: Electric Resistivity of sample C-06 
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Figure 7-2: Electric Resistivity of sample C-11 

 
Figure 7-3: Electric Resistivity of sample C-14 
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Figure 7-4: Electric Resistivity of sample C-15 

 
Figure 7-5: Electric Resistivity of sample C-16. 
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`  

Figure 7-6: Electric Resistivity of sample C-17 

 
Figure 7-7: Electric Resistivity of sample C-21 
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Figure 7-8: Electric Resistivity of sample C-22 

 
Figure 7-9: Electric Resistivity of sample C-28 
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Figure 7-10: Electric Resistivity of sample C-29 

 
Figure 7-11: Electric Resistivity of sample C-30 
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Figure 7-12: Electric Resistivity of sample C-34 

 
Figure 7-13: Electric Resistivity of sample C-35 
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Figure 7-14: Electric Resistivity of sample C-40: 

 
Figure 7-15: Electric Resistivity of sample C-42 
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7.2 Disk Sample Figures 
 

 
Figure 7-16: D-1B 



www.manaraa.com

81 
 

 
Figure 7-17: D-2B 

 
Figure 7-18: D-3B 
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Figure 7-19: D-4B 

 
Figure 7-20: D-5B 
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Figure 7-21: D-6B 

 
Figure 7-22: D-7B 
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Figure 7-23: D-8B 

 
Figure 7-24: D-9B 
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Figure 7-25: D-1C 

 
Figure 7-26: D-2C 
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Figure 7-27: D-3C 

 
Figure 7-28: D-4C 
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Figure 7-29: D-5C 

 
Figure 7-30: D-6C 
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Figure 7-31: D-7C 

 
Figure 7-32: D-8C 
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Figure 7-33: D-9C 

 
Figure 7-34: D-1D 
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Figure 7-35: D-2D 

 
Figure 7-36: D-3D 
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Figure 7-37: D-4D 

 
Figure 7-38: D-5D 
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Figure 7-39: D-6D 

 
Figure 7-40: D-7D 
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Figure 7-41: D-8D 

 
Figure 7-42: D-1E 
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Figure 7-43: D-2E 

 
Figure 7-44: D-3E 
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Figure 7-45: D-4E 

 
Figure 7-46: D-5E 
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Figure 7-47: D-6E 

 
Figure 7-48: D-7E 
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Figure 7-49: D-8E 

 
Figure 7-50: D-9E 



www.manaraa.com

98 
 

 
Figure 7-51: D-1F 

 
Figure 7-52: D-2F 
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Figure 7-53: D-3F 

 
Figure 7-54: D-4F 
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Figure 7-55: D-5F 

 
Figure 7-56: D-6F 
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Figure 7-57: D-7F 

 
Figure 7-58: D-8F 
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Figure 7-59: D-9F 

 
Figure 7-60: D-1G 
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Figure 7-61: D-2G 

 
Figure 7-62: D-4G 
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Figure 7-63: D-5G 

 
Figure 7-64: D-6G 
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Figure 7-65: D-7G 

 
Figure 7-66: D-8G 
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Figure 7-67: D-9G 

 
Figure 7-68: D-1H 
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Figure 7-69: D-2H 

 
Figure 7-70: D-3H 
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Figure 7-71: D-4H 

 
Figure 7-72: D-5H 
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Figure 7-73: D-6H 

 
Figure 7-74: D-7H 
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Figure 7-75: D-8H 

 
Figure 7-76: D-9H 
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Figure 7-77: D06-1 

 
Figure 7-78: D06-2 
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Figure 7-79: D06-3 

 
Figure 7-80: D06-4 
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Figure 7-81: D11-1 

 
Figure 7-82: D11-2 
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Figure 7-83: D11-3 

 
Figure 7-84: D11-4 
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Figure 7-85: D14-1 

 
Figure 7-86: D14-2 



www.manaraa.com

116 
 

 
Figure 7-87: D14-3 

 
Figure 7-88: D14-4 



www.manaraa.com

117 
 

 
Figure 7-89: D15-1 

 
Figure 7-90: D15-2 



www.manaraa.com

118 
 

 
Figure 7-91: D15-3 

 
Figure 7-92: D15-4 



www.manaraa.com

119 
 

 
Figure 7-93: D16-1 

 
Figure 7-94: D16-2 



www.manaraa.com

120 
 

 
Figure 7-95: D16-3 

 
Figure 7-96: D16-4 



www.manaraa.com

121 
 

 
Figure 7-97: D17-1 

 
Figure 7-98: D17-2 



www.manaraa.com

122 
 

 
Figure 7-99: D17-3 

 
Figure 7-100: D17-4 



www.manaraa.com

123 
 

 
Figure 7-101: D21-1 

 
Figure 7-102: D21-2 



www.manaraa.com

124 
 

 
Figure 7-103: D21-3 

 
Figure 7-104: D21-4 



www.manaraa.com

125 
 

 
Figure 7-105: D22-1 

 
Figure 7-106: D22-2 



www.manaraa.com

126 
 

 
Figure 7-107: D22-3 

 
Figure 7-108: D22-4 



www.manaraa.com

127 
 

 
Figure 7-109: D28-1 

 
Figure 7-110: D28-2 



www.manaraa.com

128 
 

 
Figure 7-111: D28-3 

 
Figure 7-112: D28-4 



www.manaraa.com

129 
 

 
Figure 7-113: D29-1 

 
Figure 7-114: D29-2 



www.manaraa.com

130 
 

 
Figure 7-115: D29-3 

 
Figure 7-116: D29-4 



www.manaraa.com

131 
 

 
Figure 7-117: D30-1 

 
Figure 7-118: D30-2 



www.manaraa.com

132 
 

 
Figure 7-119: D30-3 

 
Figure 7-120: D30-4 



www.manaraa.com

133 
 

 
Figure 7-121: D34-1 

 
Figure 7-122: D34-2 



www.manaraa.com

134 
 

 
Figure 7-123: D34-3 

 

 
Figure 7-124: D35-1 



www.manaraa.com

135 
 

 
Figure 7-125: D35-2 

 
Figure 7-126: D35-3 



www.manaraa.com

136 
 

 
Figure 7-127: D35-4 

 
Figure 7-128: D40-1 



www.manaraa.com

137 
 

 
Figure 7-129: D40-2 

 
Figure 7-130: D40-3 



www.manaraa.com

138 
 

 
Figure 7-131: D40-4 

 
Figure 7-132: D42-1 



www.manaraa.com

139 
 

 
Figure 7-133: D42-2 

 
Figure 7-134: D42-3 



www.manaraa.com

140 
 

 
Figure 7-135: D42-4 


